

The heart of the Mark-8 Minicomputer is
an lntel 8008 microprocessor IC that con-
ta ins al l of the ar i thmet ic registers, sub-
routine registers and most of the control
l og i c necessary to i n te r face the m ic ro -
processor with semiconductor memories as
well as input and output registers. Standard
TTL type IC's are used throughout and
c o m m o n l y a v a i l a b l e l l 0 l , l l 0 l A a n d
I l0l A l type memories are used for the cen-
tral storage. The microprocessor with its as-
sociated logic will be refered to as the cen-
tra l processor uni t , or CPU.

The centra l processor uni t is an 8-bi t
parallel processor. A string of eight binary
bits, Dz through Do , is used to indicate the
i n s t r u c t i o n d a t a o r m e m o r y l o c a t i o n s .
Rather than repeat, "eight bits of binary
data", we refer to the eight bits as a byte.
As you will note, some of the instructions
take up to three bytes of data and they are,
therefore, cal led three-byte instruct ions.
The computer takes 20 pts to execute each
byte of these instructions, so the time to
execute any of the basic instructions may
vary from 20 to 60 pts. The time that the
computer takes to execute one byte of the
instruct ion is cal led the computer 's cycle
t ime. Most minicomputers have a cycle t ime
tha t i s abou t ten t imes fas te r than the
Mark-8, but th is wi l l not restr ic t the use of
th is Minicomputer in most s i tuat ions.

The Intel 8008 microprocessor provides
us wi th some sophist icated features, only
found on larger, more cost ly computers.
These include a pointer register, interrupt
pointers and a stack register for multiple
subrout ines.

The Mark-8 is programmed in assembly
or machine language, the basic language of
al l computers which consists of I 's and 0 's
grouped into bytes. While it may seem cum-
bersome at first. this is one of the most flex-
ible ways to program while keeping down
the cost of added storage or memory. The
use of just the I 's and 0 's to represent the
binary numbers can become tedious after a
short whi le. l t becomes much easier to con-
vert the binary numbers to their octal equiv-
alent and use these di rect equivalents in-
stead.

There are 48 program instructions to use
in programs on the Mark-S. Each program
must consist of an orderly. logical chain of
steps in successive memory locat ions. l f
data or program steps are not loaded in the
correct order, the program won't work cor-
rectly and is said to have a bug in it. Those
not familiar with the basic operations of a
computer and the various number systems
used will f indComputer Architecture, by Cax-
ton Foster, Van Nostrand-Reinhold, New
York, New, York 1970, $12.50 an easy to
read and unders tand in t roduc t ion tha t
should be read before attempting to build or
use the Mark-8.

The basic Minicomputer consists of six
modules:

L Main CPU module.
2 . Memory Address /Manua l Con t ro l

module.
3. Input Mul t ip lexer module.
4. Memory module.
5. Output module.
6. Readout module.
These modules provide the experimenter

with the basic minicomputer configuration.
Two 8-bit input ports are provided for get-
ting data into the computer and four 8-bit
output ports are provided to output data to

external devices. The memory module can
accommodate up to 1024 bytes or words of
storage, although only 256 words are re-
quired to start. Manual controls are pro-
vided for the user and a readout of some of
the important registers is provided on the
Readout module.

Six different modules
The Central Processor Unit (CPU) module

contains the microprocessor lC and the
extra circuitry used to interface with the rest
of the computer. lt is important to note that
the 8008 microprocessor has been fabricated
as an MOS circuit and the outputs wil l only
drive one low-power circuit of the 74L
series. Each output is buffered with a 74LM
inverter before it is used. The main, 8-line
inpuUoutput bus, or I/O bus is also buffered
by two 7404 circuits to give the TTL signals
a high fan-out.

The computer is controlled by a 2-phase
clock supplied by a crystal oscillator which
controls the pulse widths and frequency.
The clock and the synchronization signal
supplied by the microprocessor are used to
control some of the logical operations of the
computer interface circuits. The synchroni-
zation signal synchronizes the operation of
the very fast TTL circuits and the slower,
clocked, MOS circuits in the microproces-
sor. The microprocessor also has three,
state-output signals, S,,, S,, and 52 which are
used to drive a decoder. The eight possible
states are then used to control other func-
tions in the interface logic. A complete de-
scription of the generation and use of these
state outputs is included in the lntel User's
Manual

Since the CPU uses a parallel 8-bit l/O
bus for input and output of data there must
be some control of when the bus is sending
data from the CPU to an external device or
when it is taking data in. Two lines are pres-
ent on the CPU module, TN and o-UT.
These lines are used by the other modules to
regulate the flow of data in the correct direc-
tion at the correct time. The control of the
Ni and OTTlines is governed by the addi-
tional logic on the CPU module.

The Memory Address/Manual Control
module is used to hold data which is to be
used as the memory address. Two 8-bit
latches are provided since the computer will
use one set of eight bits for a memory ad-
dress and the other set of eight bits for control
functions. Since the microprocessor can di-
rectly address up to 16,424 words of mem-
ory, commonly noted as l6K, we will need
l4 binary bits for the complete address. The
complete memory address of any location is
given by a lGbit binary number; X X Bs Bs
Br B:r Br Be I Bz Bz Bz Bz Bz Bz Bz Bz.
where the X's represent bits that are not
used. The computer specifies apy address
by first sending out the Bz bits to one of the
eight-bit latches, followed by the six Br bits
and two X bits. Control of the correct latch
is supplied from the CPU module.

The Bs bits have the most significance or
value in the complete digit, while the Bz bits
have the least significance. This is like com-
paring $1000 and $1. The further to the left
the digit, in any numbering system, the more
value it has. For this reason the Bs bits are
called the most significant or the HI part of
the address, while the Bz bits are called the
least significant or LO part of the address.
Both the HI and LO address latches are
made up of SN74l93 programmable coun-

COMPUTER WITH ASCII KEYBOARD makes a complete worklng computer system. You can use the
computer wllhout the keyboard, but lt ls more dlfflcult.

lce'

THE WORKING HEAhT of thc computcr le rclatvcly clmplc. Thc glx prlmary clrcult boardr tnd thc
front-panel controlc ars ghown here. ll addltlonal memory lg needed, more clrcultg boards are
rcqulred.

ters, since the address held in them may be trols the flow of all data into the computer.
incremented, by count ing up by one. The Al l data going into the computer is p laced on
usefulness of th is wi l l be seen later . The HI the I /O bus dur ing the lN cycle s ignal led by
and LO latches are also used for temporary the TN signal. Since data may be coming in
data storage when they are not being used to from a number of different experiments or

store a memory address. sources, we must have some means of
Themanua lcon t ro lpo r t i ono f th i smodu le se lec t i ng wh ich da ta i s fed in to the CPU.

allows uF to program the computer and to Two basic multiplexers are used for this
contro l i ts operat ion f rom an operator 's precise gat ing of data. The two 8263 quad,

console. We are able to externally address three-line to one-line multiplexers control
any memory loca t ion and depos i t da ta o r i n - wh ich o f th ree se ts o f i npu t l i nes a re
structions in it. We may also return to any selected. Note that two sets of these input
location and check the data stored there. l ines are input ports 0 and l. These are the
Controls are also provided to allow us to two external data input ports. The third set
single-step the computer through a program, of data input l ines comes from the memory.
one instruction at a time and to interrupt the Data or instructions in the memory, all go
computer whi le i t is execut ing a program. through the mul t ip lexer and into the CPU.
These controls will be described in detail This multiplexer is followed by a second
later . set of mul t ip lexers, 8267's. These are quad,

The Data Input Muttiplexer module con- two-line to one-line multiplexers with open-

collector outputs which are compatible with
the computer bus structure. This mul t i -
plexer switches between the data selected at
the previous multiplexer and data from the
Interrupt Instruction Port. The use of the
Interrupt Instruction Port willbe covered in
the Interrupt section. This second multi-
plexer may also be in an off or unselected
state which is used when data is not to be
sent to the CPU module. Control l ines SLo
and SLr are sent directly from the CPU in-
terface logic.

Remember that when the HI address is
not being used to store a memory address, it
is used for control signals. During an IN or
OUT cycle these contro l s ignals are de-
coded and used to select the proper input or
output l ines for the I/O bus. The Multi-
plexer module decodes the control bits B,
C, D, and Dsn,51" and OR's them with IFI
to select the proper external datainput port.
When the computer is instructed to get some
data from memory it automatically selects
the memory input section of the multiplexer.
The INPUT instruct ion is only used when
you wish to input data from some external
s o u r c e s u c h a s a d i g i t a l v o l t m e t e r o r
keyboard, through one of the two input
ports.

The Memory modu le uses the w ide ly
avai lable I l0 l type of semiconductor , inte-
grated c i rcui t memory. The l l0 l random
access memory or RAM is organized as a
256 x l -b i t memory, so eight of the I l0 l type
memories are used to g ive us 256, e ight-b i t
words. This is the minimum conf igurat ion
necessary for the operation of the Mark-8.
Each memory module can hold 32 of the
l l 0 l memor ies fo r a to ta l o f 1024 o r lK
words of storage. Up to four Memory mod-
ules may be used wi th the Mark-8, g iv ing us
a maximum 4K of storage space. More than
enough for most appl icat ions.

Each of the 256 words are addressed by
the eight b i ts f rom the LO address latch.
Since 28 : 256 we can only address 256
words using the LO address alone. Each
memory also has an enable l ine so we may
select b locks of 256 words. using th is l ine.
The HI address is , therefore, used and de-
coded with a standard decoder and the de-
coded outputs are used to enable or select
the blocks. You do not have to be con-
cerned about the part icular b lock where
data has been stored, just use the complete
l4-bi t address, s ince the memory does the
complete decoding.

Each of the addressed memory locations
may store one 8-bit word or byte of informa-
tion. For 2 or 3-byte program steps, two or
three successive memory locat ions are used
for storage.

T h e I l 0 l t y p e m e m o r i e s a r e v o l a t i l e
semiconductor memories and informat ion

- stored in them will be altered or lost if the
power is shut off. lf you want to save a
program, leave the power on.

A chart in the construction section shows
how the memory jumpers are wired for each
of the four possible boards. Boards must be
added in numer i ca l sequence : 1 ,2 .3 , and 4 .
Blocks of memory must be added in units of
256 words in the A, B, C, and D sequence,
to prevent gaps in the memory.

A read/write or R"/W line is provided on
the module so that data may either be read
from, or written into a selected memory lo-
cat ion. The CPU and the Manual Control
module both control this l ine so that data
may be entered under computer control or

3

so that we may insert our program data into
the memory prior to use by the computer.

The eight data-output lines from the
memory are sent to the CPU I/O bus
through the Input Mult iplexer module.
When we ask for data from the memory with
an LrM type of instruction (see Intel lJser's
Manual), the CPU senses that the memory
data is needed and it sets the input multi-
plexer so that the data is placed on the I/O
bus at the proper time.

The Output Latch module is used to send
data from the computer to some external
device or instrument, such as a teletype or
perhaps the Radio-Electronics TV Type-
writer (Radio-Electronics, September 1973).
Four output latches are provided on the
Output Latch module and two of these
modules may be used with the Mark-8. The
second module may, however, only use
three of the output latches.

Note that data is sent from the LO ad-
dress latch to each output port and that these
connections are in parallel. The computer
decides which latch is activated according
to the OUTPUT instruction that we have in
our program. Here, again, the HI address
latch holds the control bits B, C, and D
which are decoded and NORed withO-UT
to activate the selected eight bit output port
or latch. NOTE: The OUTPUT instruction
in the Intel User's Manual has two RR bits
shown in it. These bits must be set to RR :

PRINTED.CIRCUIT BOARD ASSEmBLY lr a gtack ol slr 2-slded boards. }|olcx connectorl and
cabler are uted to Interconnect the boardr and !o conn.ct the boardt to the lront-panel control3.

All rerlrtorr atcVc Watt, l(P/o

CPU BOARD

C1-33-pF disc
C2 thru C6-0.1-UF disc
rc1, rc,4, rc6, tc7, tcg, tc l3, tc17, tc lF 7400
lC2, 1C,3, lC1+7476 Dual JK fl ip-flop
lcs, rc11, rcl6, tc20, tc21-7404
lC8, lCl2-7474 dual D fl ip-flop
lC22,lC23,lC2*74L04 hex inverter, low power
rc10. rc l8-7410
tc1*-74n
lC2rH008 Intel microprocessor
lC2*7442 decoder
R1, R2-220 ohms
Rf560 ohms
R,t-1800 ohms
R5, R6, R7, R8, R17-1000 ohms
R9 thru R16-22.000 ohms
XTAL 1-4000.00GKH2 crystal type EX ($3.95

from lnternational Crystal, 10 N. Lee Street,
Oklahoma Gity, OK)

Misc-PC Board, No. 24 wire, solder

INPUT MULTIPLEXER BOARD

C1, C2, Crt-0.1-UF disc
C2-1 .O-pF 10 V electrolytic
lC1, lC2-8263 m u ltiplexer (S i gnetics)
rc3-7400
lC4, lC5_8267 multiplexer (Signetics)
tcf-7402
lC7-7442 decoder
P1, P2, P3, P4-Molex type 09-52-3081 con-

nectors
R1-1000 ohms
Misc-PC board, No. 24 wire, solder

ADDRESS LATCH BOARD

C1 thru C&-0.01-pF disc ceramic
C7-{80-pF disc
lOl, lC2-74'123 dual monostable
lc3, lc4, lcs, rc6, tc7-7400
lC8 , lC9 , 1C10 , lC11-74193 p rog rammab le

counter
P'l, P2, P3-Molex Type 09-52-3081 connectors
R1 thru R3-10.000 ohms

4

PARTS LIST

R4-22,000 ohms
R5 thru R16-1000 ohms'
Misc-P0 board, 324 wire, solder

MEMORY BOARD

C1, C2, C3--0.1-pF disc ceramic
lC1 th ru lC8-1101 , 1101A o r 1101A1 memory

circuits, 256 x 1
lC9 thru lC32-Same as above, but optionalwith

bui lder
lC33-7442 decoder
rc34-7lm0
P1, PFMolex type 09-52-3081 connector
R1 thru R11, R20, R21-1000 ohms
R12 thru R1F10.000 ohms
Misc-RC board, No. 24 wire, solder

OUTPUT LATCH BOARD

C1, C2, C3,-0.1-pF disc
fC1 thru lC8-7475 quad latch
rcg. rclG-704
tc11-7402
tc12-7442
P't, n, P3, PzFMolex type 0952-3081 connector
Misc-PC board, No, 24 wire, solder

LED REGISTER DISPLAY BOARD

C1-1 00-pF electrolytic
C2, C3, C4-0.1-UF disc

D1 thru D32-MV-50, MV-5020 or equivalent
Red, visible LED's

fC1 thru lC6-7404
rc7, rcf7475 quad latch
lC9-7442 decoder
rc1r74n2
P1-Molex type 09-52-3081 connector
R1 thru R32-220 ohms
Misc-PC board, No. 24 wire, solder

CONTROL PANEL

D1-MV-5020 or equivalent red, visible LED
R1-220 ohms
51 thru 511-spdt switches, rocker or toggle
513 thru 317-spdt momentary, spring return,

rocker or toggle
PS-Power supply, logic power supply available

from Precision Systems, P.O. Box 6, Murray
H i l l , NJ 07974 . +5 vo l t s /8 .5A and - ' , | 2

voltJ2.0A, adjustable to -9 volts. Also other
voltages available. See text.

Misc-Metal case, red plastic fi lter, l ine cord,
hardware, hook-up wire, solder.

The microprocessor integrated circuit
is available from lntel Corporation, 3065
Bowers Avenue, Santa Clara, CA 95051
ala cost of $120.00.

A complete set of circuit boards is available for the Mark-8 Minicomputer lrom
Techniques lnc., 235 Jackson Stree, Englewood, N.J. 07631. Prices include ship-
ping charges insade the United States.

Complete set o f s ix boards (1 o f each) $47.50
c P U B o a r d 7 . 5 0
Address Latch Board10.50
Input Mult iplexet Board .. .9.50
lK Memory Board ..8.45
LED Register Display Board8.45
Output Por ts Board8 .50

Techniques had,100 setsof boards in stock when this issue went on sale. When
these boards are sold, there will be a 6 to 8-week detay belore additional boards
become available.

D7 33r*r.r,o*
D6 a7

D5 a6

D4 s5

D3 a4

J

I

H

G

F

E

D

a3

a2

D2

Dd at

STROBE

0.1 TO
O.47rtF

TO TV.TYPEWRITER OR
MARK-8 MINICOMPUTER

POWER TO PIN 16
G R O U N D T O P I N 8

Mark-8 Minicomputer to TV-Type-
writer interface

The Mark-8 Minicomputer may be used
with the TV-Typewriter to display compu-
ter generated information. The interface
u s e s e i t h e r t h e A o r B O u t p u t P o r t
s t rapped to the spec i f ic output code, 1-7,
that you se lect . The A and B output por ts
have s t robe l ines which are pu lsed dur ing
the ou tpu t cyc le . These two l i nes a re
found above the B output l ines and be low
the A output l ines on the pr in ted c i rcu i t
board. These strobe l ines provide us with
the Keypressed signal required to enter
data into the TV Typewriter. A monostable
is attached to this strobe l ine to stretch
the pu lse width and the 10 prF capac i tor
used for debounc ing is removed f rom the
TV-Typewr i ter . Th is is C17 shown in F ig .8
of the TV-Typewriter booklet.

,
SOFTWARE EXAMPLE

regis ter is output to the shor t t iming loop so that i t can not go
as a complete ASCI I fas ter than data may be entered to the

computer then enters a TV-Typewriter memory.

/Load A wi th data

/Da ta : 177 : ASCI I "? "

JSUN OUTPUT /Jump to OUTPUT subrout ine

B6

B 7

F R O M
OUTPUT

PORT

FROM ASCI I
KEYBOARD

0l for proper data output . OUT : 0 l 0 lM
MMl . The MMM b i t s a re se t to the b ina ry
equivalent of the decoder state selected for
that particular output port. For example 0l
010 I I l would output data at output port 3,
s i n c e 0 l l : M M M : 3 .

The LED Register Display module pro-
v ides you wi th a v isual indicat ion of the con-
tents of the HI and LO address latches and
the memory data in the selected memory lo-
cat ion indicated by that address. Output
port 0 is also located on the Readout module
and it may be used in programming to give a
visual output of a byte of data. Each of the
output registers is represented by eight
LED ind ica to rs , I : ON,0 : OFF. As the
data held in each register changes, so do the
indicators. Data to be displayed at output
port 0 must be sent with an OUT instruction
0 l 0 1 0 0 0 1 o r l 2 l n .

Since the H I address latch is used for
some control functions and the LO address
latch may also be used for temporary stor-
age ofdata going to the output ports, at var-
ious times in programs the data in these reg-
isters will change from a memory address to
these control and output data and then back
to an address. Checking th is data v isual ly in
these registers during the debugging of a
program is very helpful.

The power supply requirements of the
Mark-8 are +5 Vdc at 3 amps and -9 Vdc at
1.5 amps. Since regulat ion at these high cur-
rent levels is crit ical we suggest that the
power supply or suppl ies are purchased.
There are many good power supplies on the
surplus market that may be used with the
Mark-8. The type used with the prototype is
listed in the complete parts List. A substi-
tute, available from Wortek, 5971 Reseda
Blvd.. Tarzana. Calif. 91356 will work as
well. Order part numbers PRS-l and PRS-3,
each $25.00 R.E
* For more detailed data on the Microprocessor
IC write to Intel Corp., 3065 Bowers Ave., Santa
Cf ara, Calif. 9505I - ask for a copy of "8a08, 8-Bit
Parallel Central Processor Unit-Users Manual. This
manual was offered free at the time this article
went to press.

HOOKUP THE MARK-8 COMPUTER TO YOUR TV TYPEWRITER uslng the clrcuits shown above and
to the lefl. Wlrlng to the TV typewrlter ls luat dlrect connecllons (above). The lC monostable (left)
ctretchcr the pulee wldth. Together, the TV Typewrlter (Radlo-Electronlcs, September 1973) and the

86 Mark€ make a powerlul compuler package.

87

TO TV.TYPEWRITER
CONNECTIONS

KEYPRESSED C

LDAI

1 7 7

HALT

OUTPUT, OUTl

/Stop, end of program

lData from A to output port 1

/Load C lmmediate

/Data

/Decrement D

/Jump on a fa lse zero f lag
to LOOP

Data in the A
TV-Typewr i t e r
character. The

000 006

001

002

003

004

005

040

041

o42

043

044

1 7 7

1 0 6

040

000

000

123

026

004

031

1 1 0

045 043

046 000

047 021

0 5 0 1 1 0

051 043

052 000

LOOP,

LDCI

004

DECD

JPFZ, LOOP

007

DECC /Decrement C

JPFZ, LOOP /Jump on a false zero f lag
to LOOP

RTUN /Uncondi t iona l re turn to main
program

F

I

1/2 SN74O2 oueo NoR GArE

053

Construction
The Mark-8 Minicomputer consists of printed circuit boards for

each of the six modules, a main chassis for mounting the PC boards
and the controls and a power supply. The addition of a keyboard and
and an alphanumeric readout is optional. The printed circuits are
double sided, but the holes have not been plated through to keep the
cost down. It will be necessary to be sure that both sides of the
components are soldered to the board. There are also a number of
holes that do not have any pins or components going through them.
Short pieces of wire are inserted into these holes and soldered on
both sides of the board to give a continuous currqnt path. Use a low-
wattage soldering iron and be sure that pins and components are
soldered to both sides of the board. Check the parts orientation for
each module in the following diagraml

It is best to use Molex-type IC connectors for the 8008 micropro-
cessor integrated circuit since some tests will be performed before it
is placed in the circuit. Do not put the circuit in its socket before
the instructions tell you to do so. Be sure to solder the socket pins
on both sides of the PC board.

The Output Latches have a set of jumpers which allow the user
to choose which set of lettered (A,B,C,D) outputs are assigned what
c o d e . I f n o p r e f e r e n c e i s s h o w n , j u m p e r A = 1 , 8 = 2 , C = 3 , D = 4
and so on for the three latches on the additional Output module, if
it is used.

The Memory module also has a number of jumpers that are used
to select various options.'On the first or only board install the A
jumpers below the SN7442 decoder and install all of the resistors.
On following boards install the B jumpers and only resistors R17
through R21.

There is a 0 and a l jumper between the SN7442 decoder and
the SN7400 NAND gate IC. Install the 0 jumper on the first two
boards and the I jumper on the last two boards. NEVER install
both jumpers.

Install the 1101 type memories in rows of eight IC's starting from
the bottom row of eight and going to the top. Additional memories
are added in blocks of eight IC's. The bottom row on the first board
is the minimum configuration for a working computer. The blocks of
memory are selected by the jumpers above the SN7442 decoder.
The four pads above the eight numbered ones .ue connected to each
block of eight IC's. Select, from left to right, on boards I and 3
codes 0, 1,2, and 3. On boards 2 and 4 select codes 4, 5, 6 and 7.
The jumper combinations for the four possible boards are sum-
marized in the following chart.

MEMORY JUMPER CHART

Board Resistors
A o r B
Jumper

0 o r 1
Jumper

Block Code
Jumpers

1
2
3
4

A L L
R 1 - R 4 & R 2 1
R 1 - R 4 & R 2 1
R 1 - R 4 & R 2 l

A
B
B
B

0
0
1
1

Figure 1
Figure 2
Figure 1
Figure 2

M E M O R Y B L O C K C O D E J U M P E R S^\rK'", ^N,
oJ I o o oo. \ I

F i G U R E 2F I G U R E 1

The second, third and fourth memory boards derive their Read/
Write signal from the first board. When adding extra boards, after
the jumpers have been set and the boards soldered into the proper
sequence, connect the OUT on the top of the first board to the IN
on the second. then the OUT from the second to the IN of the third,
and so on. The WRITE OUT on the top of the Address/Manual
module goes to the IN on the first board of the four boards. If only
one board is used, wire it as if it were board number one.

All six circuit boards are connected by a series of up to 4l wires
which are laced through the bottoms of the boards. All but a few
are parallel connections. This allows us to "fan" the boards open for
testing after they have been connected. We also avoid the use of
expensive and special connectors. A few connections are made on
the board tops, but these are easily made with the Molex connectors
in the parts l ist. These connectors may also be used on the sides of
the Input and Output modules where the input and output l ines are
connected. The following diagram, Fig. 3, shows the top-of-board
connections. Be sure to observe the correct board orientation and
sequence when wiring the boards together. The LED's on the read-

6 RADro-ELEcrRoNtcs .

out module must face outwards and the components on the following
boards face in the same direction. When mounting the Mark-8 on or
in a chassis, remember to allow enough room for possible future
module expansion as well as for additional modules which may be
published in the future. Also allow about 314 to 1 inch between
boards for convection cooling. The boards have been purposely
made a large size to ease the job of trouble shooting and following
PC conductor paths.

CPU MODULE

INPUT MULTIPLEXER
MODULE

INTERRUPT INSTRUCTION
PORT ADDRESS/MANUAL

MODULE

MEMORY MODULE
N O . 2

MEMORY MODULE
N O . 1

OUTPUT MODULE

OUT I N

OUTPUT PORTS
OUTPUT

LED READOUT
MODULE

NOTE:
THIS D IAGRAM SHOWS THE PARTS ORIENTATION ON THE
MODULES AND SOME OF THE BOARD.TO.BOARD CONNECTIONS.
SEE THE INDIV IDUAL BOARD DRAWINGS FOR A COMPLETE
DRAWING OF THE PART LOCATIONS AND CONNECTIONS.

F I G U R E 3

The power supply used with the prototype was a surplus com-
puter power supply available from Precision Systems, P.O. Box 6,
Murray Hill, N.J. 07974, for $35.00 postpaid. This power supply
provides +5 Vdc at 8.5 amps, +12 Vdc at 2.5 amps, -12 Ydc at 2
amps. The -12-volt supply is easily changed to -9 volts, using the
variable resistor trimmer on the side of the power supply. Unreg-
ulated voltages of 6 Vdc, 30 Vdc and 180 Vdc are also provided.

Controls
Since we are working with an 8-bit computer, eight switches are

provided on the Interrupt Instruction Port. This is called the Switch
Register or SR and it is one way to get data into the computer under
manual control. You will notice on the Input Multiplexer module
schematic diagram that the SLg signal is gated with a Jam signal.
When the Jam is at ground, this forces the SLg signal to also go to
ground. When this happens, the 8267 multiplexers are held in the
state which allows the data present at the Interrupt Instruction Port
to be placed on the I/O bus, going to the memory and to the HI and
LO address latches. When the INTERRUPT/JAM switch is returned
to the normal INTERRUPT position, control of the SLg line is taken
over by the CPU control logic. The JAM control allows us to jam

data onto the I/O bus. This Jam mode is useful only when the com-
puter is not operating, but before we start the computer the INTER-
RUPT/JAM control switch must be in the normal INTERRUPT
position. -

The computer is normally in the RUN state and it only halts when
it reaches a halt or HLT type instruction in our program. If we wished
to see how a program worked at slow speed so that we could follow
it, it would be necessary to slow down the computer. The Mark-8
has a RUN/SINGLE STEP switch which allows us to either run the
program at the normal computer speed of 50,000 steps per second, or
a step at a time. In the RUN mode the computer operates at its own
speed, determined by the clock. In the SINGLE STEP mode the
computer is pulsed each time we press the SINGLE STEP switch,
causing a complete computer cycle to take place. In the SINGLE
STEP mode it is much easier to debug a program and find our pro-
gramming errors. We can switch between the RUN or SINGLE STEP
modes without affecting the normal operation. We only slow down
the execution of the program.

The use of the next four controls lets us enter data into the com-

WRITE OUT

puter and check data already stored in memory, before starting the
computer program. In this way computer programs are stored and
then used. When using any one of these next four controls, the
INTERRUPI/JAM switch must be in the JAM position and the RUN/
SINGLE STEP switch must be in the SINGLE STEP position.

The LOAD ADDRESS-HI or LAH switch allows us to load the
HI address latch with the number currently set on the switches in the
switch register. We may change the number as often as we like, just
by changing the number set on the switch register ard actuating the
LAH switch. The LOAD ADDRESS-LO or LAL switch is operated
in exactly the same way, entering the number set on the switch register
to the LO address latch. Using the eight switch register switches and
these two controls we can manually load any address in the address
latches. You will notice the new address appear on the LED indicators
in the HI and LO address readouts when we do the checkout. As
soon as an address has been loaded the memory data LED's will indi-
cate the current contents of the location we have just addressed. We
can address all possible 16,000 storage locations in the memory from
the switch register, but it is important to note that it is only realistic
to try and address memory locations that actually exist as implemented
with the I l0 l memories.

The DEPOSIT switch allows us to deposit data from the switch
register to the memory location that we have just addressed. Once
the HI and LO addresses have been loaded and checked we set the
switch register to the value of the data to be entered into that loca-
tion. Pressing DEPOSIT causes the computer to write the data word
set in the switch register in the memory location we have selected.
The memory address is automatically incremented when we actuate
the DEPOSIT switch. This is done by using the SN74l93 program-
mable counters as the address latches. By automatically incrementing
the address we have gone to the next memory location without
having to reload the next successive memory address. We may now
deposit data in the next memory location and the next and so on
just by setting the data in the switch register and actuating DEPOSIT.
The address steps to the next location automatically. In this way
blocks of data are easily stored in successive locations.

Another control, EXAMINE, is also provided. Once we have
loaded an address in the HI and LO address latches using LAH and
LAL we see the contents of that location in the memory data LED
readouts. Actuating EXAMINE steps the memory address to the
next location without altering the data stored there. We may examine
consecutive locations just by depressing the EXAMINE switch. This
allows us to check programs or data without altering the data present.
Suppose that we depress EXAMINE and we find that the data is in-
correct and we would like to change it. Set the new data in the
switch register and actuate DEPOSIT. This changes the data in that
particular location. We may now continue to examine data in the
next consecutive locations by continuing to actuate the EXAMINE
switch. Any of our memory locations may be examined and data
may be stored in any of them. Since the new data writes over the
old data it is not necess:uy to clear out a memory location before it
is used.

Remember that these controls may only be used if the computer
is in both the JAM and SINGLE STEP modes.

Interrupt
The INTERRUPT has been mentioned, but l itt le has been said

about it. The INTERRUPT is used to do just that to the computer.
We can interrupt the present program and cause the computer to
temporarily do some other task and then return to the program. It
is also possible to make the computer leave a stopped state with the
interrupt.

Suppose that we want to get a character from a parallel output
ASCII keyboard and display it on the eight LED's of output port 0.
The needed program could be written as:

Address Instruction Comments*

H I LO Binary Octal
- lnput data f rom port 0 to
CPU register A
-Output data f rom register
A to output port 0
-Ha l t , wa i t t o be
i nterruPted
-Uncondi t iona I jump back
to :
-LO Address = 000
-Hl Address = 000

00

00

00

00

o0
oo

000

001

002

003

004
005

01 001 001

0 1 0 1 0 0 0 1

1 1 1 1 1 1 1 1

01 000 100

oo 000 000
00 000 000

1 1 1

121

377

104

000
000

*For a complete descr ipt ion of instruct ions see Inte l
User 's Manual

Assuming that the computer has been started the program gets an
ASCII character at input port 0 and places it in the CPU register A.
It then gets the character from register A and sends it to output port

0. The computer then halts. There is a signal l ine on the keyboard
similar to'key pressed' or'data ready'which is used to signal the
computer that there is new, valid data ready at input port 0. This
pulse or signal is used to strobe the External Interrupt Input with a
logic level 1, causing an interrupt of the processor to take place. How
does the processor know what it is to do next? The Interrupt Instruc-
tion Port is used to send an instruction to the computer which indi-
cates to the computer what its next action should be. In this case we
have entered a continue or no-operation, I 1 000 000 or 300 on the
switch register. This tells the computer to start up again and to
execute the next instruction. The next instruction is an uncondi-
tional jump, a 3-byte instruction, which indicates that the program
should now go to location HI = 00 and LO = 000, or the original
start of the program where it will get the next character. The 300
must have been set on the switch register prior to trying to input data.

Any instruction may be set on the switch register to be fed into
the Interrupt Instruction Port when the computer is interrupted.
Multiple part instructions such as the unconditional jump instruction
could also be entered, but it would take some extra interface logic to
do this. Multiple byte instructions are often entered when the com-
puter is in the Single Step mode. Usually only single byte instruc-
tions are entered. The 300 instruction, continue or no-operation, a
halt or HLT and the restart or RST instructions are usually the only
ones entered while the computer is running at its normal speed.

We have assumed that the program lust described had already been
started. How are programs started? You may have wondered, since
there is no START pushbutton on the operators console. With the
computer program entered in memory and checked as previously

described, using the JAM mode in the SINGLE STEP mode of opera-
tion, we return to the INTERRUPT mode and we enter 104 on the
switches in the switch register. We then depress the INTERRUPT
switch and then the SINGLE STEP switch. We then enter the low
address of the start of the program on the switches and actuate
SINGLE STEP, followed by the high address and the actuation of
SINGLE STEP. We have now entered a multiple byte instruction.
If we now switch to the RUN mode, the program will run. Notice
that we have only actuated the INTERRUPT switch once, just after
entering the 104 on the switch register. This is one way in which we
start a program. We enter an unconditional jump instruction followed
by the low and then the high address of the start of the program. We
can easily stop a program by entering a 37'l on the switch register and
interrupting the computer with the Interrupt switch. We start up
again by entering a 300 on the switch register and actuating Interrupt.

The Restart or RST Instruction is one of the most useful instruc-
tions that may be entered from the switch register when we interrupt
the computer. It is used to start programs and it is extremely useful
when using the computer with external devices. The Restart instruc-
tion is a pointer type of instruction that points the computer to a
particular location without a multiple byte jump instruction. If we
look at the RST instruction in the instruction set we see three bits
labeled A;00 AAA 101. The A's ate set to the star t ing address of
our program and we assume that all other bits in the address are
zero; HI = 00 000 000, LO = 00 AAA 000. Note that we may only
point to eight particular locations with the RST instruction as shown
in the following table:

AAA Restart lnstruction Poin ted to

000
001
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

oo5
0 1 5
o25

- 035
045
055
065
075

H I LO

00 000
00 010
00 020
00 030
00 040
00 050
00 060
o0 070

Assuming that the ASCII input/output program still starts at ad-
dress 00 000 we could put the computer in the INTERRUPT and
RUN modes, enter 005 on the switch register and actuate the INTER-
RUPT switch. We must then change the switch register setting to
300 for the program's use. We have used the Restart instruction to
point the computer to one particular location. If our program started
at 00 020, we could have used the 025 restart instruction to point
the computer to 00 020.

Suppose, however, that our program does not start at any of these

. RADIO.ELECTRONICS 7

locatiods, but at 00 150 instead. We would still like to be able to
start the program without the multiple byte jump instruction having
to be entered at the switch register at the start. In this case we go to
one of the pointer addresses, say 00 030 and we place a jump instruc-
tion in that location, followed by the low and high addresses of our
program's start. This will cause the computer to jump to our pro-
glam whenever it reaches 00 030. The data stored now looks like:

00 030 104 Jump to :

00 031 150 LO Address

00 032 000 Hl Address

We can now enter a 035 in the switch register and with the com-
puter in the INTERRUPT and RUN modes we actuate INTERRUPT
and cause the computer to go to location 00 030. Once it reaches
00 030 the instructions there cause it to jump to 00 15 0, the start of
our program. We have now been able to point the computer to any
location desired with a single restart instruction. This type of pointing
after the computer is interrupted is usually found on large, expensive
computers. It is very useful when taking in data from a number of
sources, as we will see next.

Suppose that we have our ASCII keyboard connected to input
port 0 and we have a digital counter connected to input port l. Each
must be able to input data to the computer. The counter will input
data once a second, while the keyboard will enter data once in a
while. The counter data is taken care of by a program at 00 040 and
the ASCII keyboard's data is taken care of by a program at 00 020.
Each input device uses the interrupt line to signal the computer that
it has data ready to input, but the computer needs some way of dis-
tinguishing where the data is coming from. As each device causes an
interrupt, it could also apply its coded pointer address to the Inter-
rupt Instruction Port in the form of a coded Restart instruction. The
computer would then be pointed to the corect program to take care
of the different data present at the input port. The counter would
apply 045 and the ASCII keyboard would apply 025 to the Interrupt
Instruction Port. This could be done as shown in the following dia-
gram, where the input lines have replaces the switches. Circuits to
prevent the coincidence of the two signals would be needed, but the
concept is still the same. This is a very easy method of allowing the
computer to be pointed to the correct program to take care of input
data from an external device.

Check-out and start-up

l. Recheck the wiring of the switches and the modules. Be sure
that all components and lC's are soldered on both sides of the pC
boards. Check to be sure that wires have been soldered through the
holes from side to side where there are no components. At this point,
the External Interrupt jumper on the Memory Address/Manual module
should be in place, and no external device should be connected to
the Mark-8.

2. B0fore connecting the power suppl.y to the computer, turn it
on and recheck the voltage levels. With the power OFF, connect the
power supply to the computer. Place the control switches in the JAM
and STEP modes. Set all switches in the switch register to 0. Be sure
that the 8008 microprocessor IC is not in the circuit at this time.

3. Since the Mark-8 uses a crystal clock, no clock adjustments
iue necessary. With the 8008 IC still out of the circuit, turn the
power on. Check the pins of the 8008 socket. Voltages should read
between ground and +5 volts. Only one pin, pin 1, should be at -9
volts. If others are at -9 volts, check for solder bridges. Turn the
power OFF and insert the 8008 IC.

4. Turn the power on. The S-volt and 9-volt LED indicators
should light. lf they do not this could indicate either a poor con-
nection or a short in the wiring. Some of the LED's on the Read-
out module may also be lit at this time. With the switch register set
at all zeros, depress LAH and LAL. Now the LED's in both the HI
and LO address registers should indicate all zeros. If no change
occurs, check the connections of the control switches. If all the
LED's now indicate ones, repeat the above procedure with the
switches set to all ones instead. If the LED's now indicate all zeros,
the power connections to the switch register are reversed. If the
LED's stay on, check the connections to the INTERRUPT/JAM
switch and the connections on the Input Multiplex module and the
Memory Address/Manual module.

Place one switch at a time in the I state and depress LAH and
LAL. The switch setting should be transferred to both the HI and
LO LED readout registers. If it is transferred to one and not the

8 RADro-ELEcrRoNrcs o

other, check the connections to the SN74l93 programmable counters
on the Memory Address/Manual module. If lt is transferred to nei-
ther, check the switch connections to the Interrupt Instruction Port.
If it is transferred to the wrong bit position, recheck the connections
to the Interrupt Instruction Port.

I N T E R R U P T E N C O D I N G D I A G R A M

- D 7

t - " ' - D 6
t :

-l
D5COUNTER

READY

KEYBOARD
READY

TO
I N T E R R U P T
INSTRUCTION
PORT

+5V

+5V

JL...JL

JL r_r T O E X T E R N A L
INTE R R UPT
L I N E

F I G U R E 4

Once these checks have been made, try loading a number of dif-
ferent addresses to familiarize yourself with how these addresses are
loaded. Then load HI = 00 and LO = 000 and use the EXAMINE
switch to examine the next few locations. The memory data should
change to indicate changes in data. Return to HI = 00 and LO = 000
and note on a piece of paper the data currently stored in the next
seven locations. Reload the starting address and now deposit some
data in the locations. The data may be random or all the same, but
be sure to note it also on your paper. After the data has been de-
posited go back and check to see if it is really there. If it is not, check
to be sure that the memory address advances each time the DEPOSIT
or EXAMINE is actuated. Also check the connection from Write
Out on the top of the Address/Manual module to the top of the
Memory module. If data is sti l l not being deposited, check the solder
connections and jumpers on the Memory module.

We are now ready to try the complete computer. Turn the power
back on and with the following switch settings, load the program
below. Set INTERRUPT/JAM to JAM and set RUN/SINGLE STEP
to SINGLE STEP.

Load LO = 000
Load Hl = 000
Deposi t = 1O4
Deposit = 000
Deposit = OO0

This short program is used to test the operation of the micro-
processor. After it has been loaded, set the switch register to 005,
return from the JAM mode to the INTERRUPT mode. actuate
INTERRUPT, and then actuate SINGLE STEP. Now as you actuate
the SINGLE STEP switch, the program should run through and then
jump back to the start at location 00 000. If the program does not
run turn off the power and check the connections to the CPU module
and be sure that all components and wires are soldered through the
board on both sides.

The next program will test the computer in a more dynamic
mode. It will increment the contents of a register and will then dis-
play it on the LED output for output port 0. The program gives the
mnemonic as well as the octal and binary instruction equivalents.
Here again, load the HI and LO starting addresses, enter the first data
word, depress DEPOSIT, enter the next data word, depress DEPOSIT,
etc., until all of the program instructions have been entered.

All the numbers in the program (program is located at the top of
the next page) are in octal notation, so remember that there are NOT
any memory locations between 00 007 and 00 010.

When you have finished depositing the data, set the switch register
to 005, switch JAM to INTERRUPT, depress INTERRUPT, depress
SINGLE STEP and then switch to the RUN mode. The computer
should now be counting or incrementing the output port 0, making
it look like a binary counter. Enter 377 or 000 on the switch register

D4

D3

D2

D 1

Do

REGISTER INCREMENT TEST PROGRAM

This program star ts at locat ion 00 000 and i t is used to
test the dynamic operat ion of the Mark€ Minicomputer.

Address Mnemonic Octal Comments

00 000
00 001
00 002
00 003
00 004
00 005
00 006
00 007
00 010
0 0 0 1 1
0 0 0 1 2
0 0 0 1 3
00 014
0 0 0 1 5
0 0 0 1 6
0 0 0 1 7
00 020
00 021

LDCI

LDAI

LDBA
INCB
LDAB
ouT0
LDBA
LDAC
ADDI

JPTC

JPUN

026
000
006
000
3 1 0
0 1 0
301
121
3 1 0
302
004
001
140
005
000
104
012
000

-Load C lmmediate
-Data to be loaded
-Load A lmmediate
-Data to be loaded
-Transfer A to B
- lnc rement B by +1
-Transfer B to A
-Output A to port 0
-Return A to B
-Transfer C to A
-Add lmmediate
-Data to be added
-Jump i f Carry is True
-LO Address of jump
-Hl Address of jump
-Uncond i t i ona l j ump
-LO Address of jump
-Hl Address of jump

and actuate INTERRUPT. The program should stop. Enter 300 on
the switch register and actuate INTERRUPT. The progmm should
again start to execute.

If all of the checks have been made and the computer operated all
of them correctly, the construction and debugging of the MARK-8
Minicomputer has been completed. You may now use the computer
in any application you wish.

Data output
We have already covered the input of data into the Mark-8 com-

puter, but l itt le has been said about the output. The four output
ports are located on the Output module, allowing us to attach up to
four different devices to the Mark-8 that will use the data from the
computer. Eight bits of data are sent from the CPU to the four groups
of latches where the data may be held. We designate the appropriate
latch with the OUT command and our jumpers determine which latch
is activated by the computer. As we have previously seen, the com-
puter has an instruction that has three M bits in it which are set to
the binary equivalent of the output port we wish to send the data to.
An instruction 0l 01q 0l I would cause the eight bits of data to be
latched at output port 1, since the underlined part of the instruction
is 001 = 1. We may also add extra output ports to the minicomputer
by adding an extra Output module. Three of the sets of latches on
the additional module may be used. Remember that we must use the
jumpers on these modules to select the code which will activate each
output port.

Although eight bits are present at the output of the port, some-
times we only need one or two bits to turn something on or off. The
following example (Fig. 5) shows how we could use an output port
in this way to turn a lamp on and off:

FROM OUTPUT
P O R T N O . 2

D9

F I G U R E 5

If we output an XX XXX XOl on output port 2 we would turn
the lamp off, while an XX XXX X10 would turn the lamp on. The
other six'X' bits may be any value since we do not use them. They
may be wired to some other device, but using this arrangement we can
only control up to four switches with each output port. A more
flexible arrangement uses two SN7442 decoders on the output ports.
These decode the output signals from the computer into two distinct
groups which may be combined to give us control of 64 devices.
This is shown in the next diagram (Fig. 6):

With this circuit as shown we could latch out 021 on output port
2 and get a signal from NOR gate I-1. Latching out a 020 would
activate NOR gate I-2. These gates could then be used to pulse a flip-
flop, a stepper motor or to open and close a valve. The decoders alone
can give us the 64 possible combinations, but with a few extra gates

F I G U R E 6

we may also use bits D6 and D7 to give us 256 possible combinations.
The output at I-3 occurs only when we latch out 243 on the output
port.

This decoder arrangement is very flexible and it is used when we
need to perform some task that does not require all eight bits of data.
We have converted one of our output ports to a decoded output and
we stil l have six possible output ports to output eight bits of data to
some other instrument such as the TV Typewriter.

Sequencing through each of the outputs shown in the schematic
diagram could be accomplished with the following sample program:

CODE OCTAL COMMENTS

LDAI

OUT2
LDAI

OUT2
LDAI

OUT2
HLT

006
021
123
006
o20
123
006
243
123
377

-Load register A wi th the data
-Data to be loaded
-Output register A to port 2
-Load register A wi th the data:
-Data to be loaded
-Output register A to port 2
-Load register A wi th data:
-Data to be loaded
-Output register A to port 2
-Hal t the program

Input
Unfortunately, the minicomputer has only three input ports,

one of which has been dedicated to getting the memory data to the
CPU. Perhaps the other one has been assigned to a keyboard, leaving
only one input port for data input. This input could be expanded
using additional multiplexers, but this would add considerable inter-
face logic to our basic computer. It is much easier to use the remaining
input port with an 8-bit data bus, similar to our main I/O bus. We
could then gate selected data onto the bus as it was needed. Open
collector or tri-state gates are used on the bus.

ln one of our previous examples, a counter was connected to the
computer's remaining input port, but now let's assume that we have
also added a digital voltmeter and it, too, will send eight bits of data
to the computer. The following bus circuit (Fig. 7) shows how this
data would be sent to the computer:

ENABLE STATE DATA TO CPU FROM

Counter DVM

0
0
1
1

0
1
g

1

N O N E
DVM
Counter
Not Al lowed

We can selectively enable the set of open collector NAND gates
(SN7401 or SN7403 types) that gate the data onto the data bus that
is connected to our input port. We may select either the counter or
the DVM for data transfer to the CPU. In most cases, however, the
data will be sent to the computer faster than we can switch between
instruments with a manual switch. There must be some method for

the computer to select which data is sent to the CPU. We have seen

how the computer may be pointed to a program, using the Interrupt
Instruction Port and a Restart (RST) instruction. We use this method
to distinguish which instrument has data to input to the CPU. Since
the computer can now distinguish between the DVM and the counter
all we need is some way for the computer to switch between the

N

o
z
F
(E
o
o-

F

F
l

=
o
CE
Lt-

D1

O R A D I O - E L E C T R O N I C S 9

COUNTER
E N A B L E

+5V

Enable lines on the sets of open-collector gates attached to the data
bus.

Decoders on an output port could be used to turn a lamp on and
off, so why not use this same concept to allow the computer to
switch between the two sets of gates. The output of NOR gate I-l
could go to the DVM Enable line and the output of NOR gate l-2
could go to the counter Enable line. To enable each we would use
the following steps in our data input programs: (Data input instruc-
tions have also been included.)

DVM INPUT PROGRAM

LDAI

OUT

I N P l

006
o20
' t23

103

-Load register A with data:
-Data to be loaded. 020 is latched

out at th is point , act ivat ing the
NOR gate output , p lacing the DVM
data on the input data bus.

- lnput data f rom port 1 to reg. A

COUNTER INPUT PROGRAM

LDAI

OUT
I N P

006
021
' t23

103

-Load A wi th data:
-Data to be loaded
-Output data from reg A to port 2
-lnput data from port 1 to reg A

Now, whenever 020 is output at port 2, we select the DVM and
when 021 is output at port 2 we select the counter to input its data
on the input bus. We could, therefore, call the DVM device 020 and
the counter device 021. We could also use the extra function, the
output from I-3 to reset the counter after the data has been taken in
by the CPU.

Other input devices could easily be added to the input data bus,
just by.adding extra sets of eight open-collector NAND gates to the
bus. Extra control functions could also be added to the decoded out-
put port by adding NOR and NAND gates as needed.

The input and output type of programming just ill'ustrdted shows
the power of the Mark-8 minicomputer. It can input and output
eight bits of digital data and it can control external events such as on
and off control for switches, opening and closing valves and enabling
other devices.

Programming
Programming is a skill that can only be learned well by doing. A

good point to start learning about programming is by disecting some
programs or parts of some programs. The programming examples in
the Intel User's Manual are useful for this. Try and understand the
BCD-to-Binary and the Binary-to-BCD routines in the Bootstrap
Loader program. The register increment program given as a test pro-
gram earlier can also be disected to understand how it works. The
program could have been written to do the incrementing and output-
ting in other ways. Can you write a short program to do this? Try to
substitute other instructions while understanding how the program
operates. Try writing short programs that use other, new instructions.
These short programs will introduce you to the power of the Mark-8.
Try also to use the subroutine pointer register and some of the four
flags in your programs.

All of your programs must be entered into the computer
the switch register using the manual controls. If you have a

10 RADro -ELEc rRoN lcs o

through
numeric

DVM ENABLE

OPEN.COLLECTOR
- NAND GATES,

7403 OR S IMILAR

TO INPUT
PORT

or an ASCII keyboard, try and write a program that will allow you to
enter program data into the computer from the keyboard. This will
certainly simplify the task of programming.

There are seven general-purpose registers in the CPU-A, B, C, D,
E, H and L. These are used for temporary storage of eight bits of data
when programming. The H and L registers are special since they are
used to point to memory locations during the execution of a program.

The H'register contains the HI bits of the memory location and the
L register contains the LO bits of the memory location. These regis
ters must be loaded with an address prior to the execution of an LMr,
LrM or LMI type of instruction. We have used the LAI instruction
before in our examples.

The following example shows how these two registers are used.
We wish to load a memory location, 0l 023 with data, 137. We first
must load H and L registers with the address and then load the data
into that selected address.

L D H I 056 | -Load register H with data:
001 | -Data to be loadd (Hl address)

L D L I 066 I -Load register L with data:
O23 | -Data to be loaded {LO address)

LDMI | 076 | -Load memory address pointed to with data:
137 I -Data to be loaded to memory

The H and L registers are internal to the 8008 microprocessor, as
are the other temporary registers. They are NOT the HI and LO ad-
dress latches that we have talked about before. When we are program-
ming we always must specify a memory location with the address in
the H and L registers before anything is done to that location.

Other basics of the progtamming instructions are included in the
Intel User's Manual. When looking at some of the programming ex-
amples in the User's Manual, note that some of the instruction codes
are in DECIMAL and not octal notation that has been used through-
out this article. Use the octal codes as much as possible since the
binary-to-octal and octal-to-binary conversion is a snap.

Octal number system
Before you attempt to understand the octal number system, you

should understand the binary number system used extensively in
computers. If you need to review the binary system, see Computer
Architecture, by Caxton Foster, mentioned previously.

The Mark-8 is an 8-bit minicomputer, and each of its eight bits can
exist in only one of two possible states, I or 0. Yciu have probably

noticed in the Intel User'sManual that the instructions are extensively
noted in straight binary format, such as 0l 0l I 110. This is an ex-
cellent way to become familiar with the instructions, but it leaves a
great deal to be desired when communicating between programmers
and computers. We have, therefore, decided to use the OCTAL num-
bering system to represent the program instructions and data as pre-
sented in this article.

The octal numbering system breaks the eight bits of the Mark-8 up
into sets of 2, 3 and 3 bits each. Each set has a value assigned for
each bit as shown below:

V a l u e = 2 1 4 2 1

Bi t = D7 D6 D5 D4 D3

4 2 1

Dz Dr Do

Set 1

D 7

D6

8-BIT DATA INPUT
F I G U R E

BUS
7

Set 3 Set 2

We can now convert any 8-bit binary number to an octal number
by placing the values over the numbered bits and adding the value if a
I is present and adding zero if a 0 is present. Thus to convert the bin-
a ry number 10 111 101 to oc ta lwewou ld have Se t 3 = Z ,Se t 2 = 7 ,
and Set I = 5. Our octal number would then be 275. You will note
that the largest binary number we can have for our eight bits is l l
111 1l I which converts to 377 .

Cover the right hand side of this column and test your conversion
skill with the following numbers:

Convert to octal

1 1 1 0 r 0 0 1
00 000 000
0 0 0 r 1 l t l

Convert to binary
352
273
105

3 s l
000
037

1 1 1 0 1 0 1 0
1 0 1 1 1 0 t l
0 l 000 101

MAR K€ MINICOMPUTER EXPE R IMENTS

l. These experiments build upon the information presented in
the main article. If you are in doubt about a point that has been dis-
cussed, go back and review it before starting the experiments.

2. These experiments use the minimum memory configuration of
256 eight-bit words. More memory may be used, but it is not neces-
sary for these experiments.

3. A keyboard or an output device such as the TV typewriter is
r?ot necessary for these experiments. If an ASCII keyboard is con-
nected to the minicomputer, connect it to input port O.

4. Most of the programs to be used in the experiments start at
address HI=000 and LO=000, so the memory board must have the
jumpers in place for the minimum configuration as noted in the main
article. Programs are started unless noted otherwise by loading 005
in the switch register (SR), placing the JAM/INTERRUPT switch in
the INTERRUPT mode and the RUN/STEP switch in the RUN
mode. Depressing the momentary INTERRUPT pushbutton or
switch will then vector the computer to HI=000 and LO=000 to
start the program. This will be noted in the experiments as 005/
Interrupt.

5. Only a few supplies are needed to do these experiments, but
the user is encouraged to build upon these experiments to learn
more about the computer operations.

1 Breadboard (EL Instruments lC breadboard or equivalent)
4 Red LED's, MV-5020 or equivalent
4 470-ohm 1/4-watt resistors
1 SN7404 hex inverter
3 SN7400 quad NAND gates
1 SN7400 (nonfunctional)
1 Datel 98Bl digital-to-analog converter (optional)

Experiment No. 1 DATA INPUT
Connect eight wires from input port No. 1 to the breadboard,

and load the following program into the computer:
Hl=000 LO=000 103 Input data from port 1 to A

121 Output data from A to port 0
OOO Halt

Start the program with a 0O5/Interrupt. Connect some of the
wires to +5 volts and some to ground. Depress the INTERRUPT
pushbutton and the data set on the lines at the breadboard should
be transferred to the LED's on the front corresponding to port 0.
Change the data set on the lines to something different and again
depress the Interrupt pushbutton. Does the data change? Is it
equivalent to the data now on the eight input lines?

Change the Program to:
103
121
104
oo0
000

Uncondit ional jump to:
LO 000
H r 0 0 0

This will continuously run the program once you start it
with a O05/Interrupt. Data is continuously taken from the input
port, held in register A and then output to the LED's on port 0. As
you change the data on the eight input lines, the LED's will also
change. Place the RUN/STEP switch in the STEP mode and depress

the momentary Step switch to step the computer through the pro-
gram. Change the input data while doing this. Can you see when
the data comes into the computer and when it is sent to port 0?

This program witt only input one word at a time and it is only
temporarily stored in register A. We often wish to store the data in
memory for use at some later time. This is done with the following
program which takes in an 8-bit data word and stores it. We can
later go back and check the memory location to confirm that the
data has indeed been stored there.

056
000
066
100
103
121
370
060
000
't04

oo4
000

Load H lmmediate
H=000
Load L lmmediate
L=100
lnput data to A f rom port 1
Output f rom A to port 0
Load data from A to memory
lnc rement L (L=L+ l)
Ha l t
Uncondi t ional jump

In this program we load registers H=000 and L=100 to act as the
address for memory storage, so our data file will start at address 100.
Set some new data on the eight input lines and start the program
with a O05/Interrupt. This will start the program and the first data
word will be stored in location 100. Change the SR setting to 300
(Continue) and now each time the INTERRUPT pushbutton is de-
pressed the eight bits set on the breadboard will be stored in se-
quential memory locations, 101, 102, 103, etc. Store about 10 dif-
ferent words of data and then stop the computer, a 000/lnterrupt
will do this, and then load HI=000 and LO=100 and use the
EXAMINE key to check your data. Does it correspond to the data
that you set on the breadboard? To restart the program, use a 005/
Interrupt. This will also re-initialize the storage address back to 100.

Data that has been stored could have come from a keyboard, a
digital voltmeter (DVM) a digital clock or even a digital combination
lock. This experiment demonstarted how a computer inputs data and
also how data files are built up for future use.

Exper iment No.2 DATA OUTPUT
We have already used a data output statement in the programs in

Experiment No. I on data input. Data has been sent to output port
0 which drives a row of eight LED's for data display. This visual data
can give us an indication of the computer's operation or a display of
data for a visual check. Output ports l-4 are used to output TTL
signals to external devices for our use in real operations.

Connect four output l ines from output port 3, bits D9, D 1, D2,
and D3, to the breadboard and the circuit shown in Fig. 8.

+5V

74O+ {4)
F I G U R E 8

When the output data is logic 1, the corresponding LED will be
ON and if the data is logic 0, the LED will be OFF. Load the fol-
lowing program into the computer and start it with a 005/Intemrpt;

006 Load A lmmediate
000 Data
127 Output to port 3
0O0 Halt

This loads A with 000 and outputs this to the LED's on port 3 at
the breadboard. Go back and change the data in location 001 in the
program to something different and restart with a 0O5/lnterrupt.
Remember that only bits 0 to 3 are used so changes in the other four
bits will not be seen on the LED's. Confirm that your new data is
sent to the four LED's. Now change the program to:

Do

D l

470A 1/4W

g , - 4 7 O C L - 1 / 4 W

. RADIO .ELECTRONICS 11

103
1 2 7
ooo

Input from port 1
Output to port 3
Ha l t

Start with a 005/Interrupt and the data from the input lines will
be output to the four LED's on output port 3. We have used the
input lines to get data and we have then sent it out to the LED's for
a visual indication. Change the data on bits 0 to 3 of the input lines
and confirm that the data is sent to output port 3 when you actuate
the INTERRUPT pushbutton. If we now change the program to:

103
1 2 7
104
ooo
000

we find that when we start with O05/Interrupt, the program will con-
tinue to run and as we change the data on the input l ines, the LED's
will also change. So far, the computer has not interacted with the
data, but has only acted to transfer it from one place to another.
Let us imagine that our four input l ines, Dg, D 1,D2, and D3 are
connected to a binary encoder that encodes the level of liquid in a
tank. Binary 0000 = empty and 1111 = full. We wish to have the
computer control the level in the tank so that it will never overflow.
We will program the computer to turn on all four LED's when the
level reaches the point which gives a binary I I l0 code. This will
signal the operator to turn off the fill valve. We could also connect
one logic output to a relay to turn the valve off if we have an
electrical valve. How do we get the computer to detect a 1110 input
code? The use of the compare instruction is the easiest. The com-
pare instruction is explained in the Intel Users Manual.

Our new program looks like:

006
000
1 2 7
1 0 3
074
0 1 6
1 1 0
003
000
006
377
1 2 7
000

Load A lmmediate
Data
Output to port 3 (Clears LED's)
Input data f rom port 1
Compare wi th:
0 1 6 s = 1 1 1 O 2
Jump i f resu l t * 0

l f = O, Load A lmmediate

Output to port 3
Ha l t

This program may be loaded and tried. The program will con-
tinuously input data from input port 1 and check it with 1110 or
016 octal. If the result is equal to 0, the computer outputs 377 to
port 3 and this l ights all the LED's. If the result is not equal to 0,
the computer jumps back and inputs and checks the next input
word. Remember that the unused input l ines to input port 1 must
be grounded for this program to work.

This experiment has shown you how the computer outputs data
and how the computer can make a decision based upon the input
data.

We would really like to make the complete process as automatic
as possible. Try writing a program to turn the lights off again when
the input code is binary 0001. This will allow the computer to refil l
the tank when it is almost empty.

Exper iment No. 3 NAND GATE TESTER
It would be very difficult for both IC manufacturers and users to

test large numbers of integrated circuits by hand, so some sort of an
automatic tester must be used. In this experiment we will use our
concepts of input and output of data and computer decision making
to do actual tests on NAND gates to determine if they are bad or good.

The program listed in this experiment will only test an SN?400
quad NAND gate package as being good if all four of the individual
NAND gates are operational. Packages with one or more bad gates
will be rejected as bad. Wire the test circuit on the breadboard as
shown in Fig..9. A NAND gate is inserted in the breadboard and the
computer is started with a 005/Interrupt. The package is removed
and the next one inserted and the computer is again started with a
0O5/lnterrupt to test this next package. The result of the test is
shown in the LED's on output port 0 as noted in the program.

In this program, our notation will be a bit more sophistcated. We
will start to understand the program steps in terms of the mnemonics
associated with each step. We will also start to assign names to
various program steps to simplify our notation, thus JPUN START
means to execute an unconditional jump to the location designated
with START. A program step like JPUN START+2 means to jump

12 RADto-ELEcrRoNtcs o

I
I

r rcu ie g
to the address that is equal to the address of START with 2g added
to it.

FROM
OUTPUT
PORT 3

D7

D5

D5

Da

D3

D2

D l

Do

250
3 1 0
320
350
066
100
0 1 0
301
121
3 1 0
302

TO INPUT
PORT 1

000 016
001 377
002 026
oo3 252
004 036
005 125
006 046
oo7 000
010 066
01 1 361
o12 250
013 301
o14 127
0 1 5 1 0 3
016 074
017 000
020 150
o21 026
022 000
o23 104
o24 053
025 000
026 302
o27 106

LDBI 030 047
031 000

LDCI 032 303 LDAD
033 106 JSUN Test

LDDI O34 047
035 000

LDEI 036 304 LDAE
037 106 JSUN Test

LDL| O40 047
041 000

XORA 042 006 LDAI
LDAB 043 OOl
OUT3 O44 1O4 JPUN Bad+2
tNPl 045 055
coMl 046 000

O47 127 Test, OUT3
JPTZ Next 050 103 lNPl

051 206 ADDL
052 043 RTTC

JPUN Bad 053 006 Bad, LDAI
054 200
055 121 0UT0

Next, LDAC 056 OOO HALT
JSUN Test

Exclusive OR A wi th A (Clears A)
L o a d A + B
L o a d A + C
L o a d A + H
Load L lmmediate

lncrement B
L o a d B + A
L o a d A + O u t p u t 0
L o a d A + B
L o a d C + A

Once you have loaded the program, test a NAND gate and see if
it is good or bad. If it is good, the right-most LED in output port 0
will be lit. If it is bad. the left-most LED will be lit.

Try and follow the logic of the program. Test patterns are sent
to the NAND gate and then checked against what they should be if
the gates are indeed good. This can also be done for other circuit
elements such as flip-flops, counters and other types of gates. Try to
rewrite the test portions of this program so that it will test NOR gates.

Exper iment No.4 RUNNING TWO PROGRAMS AT
THE SAME T IME

It is often necessary for the computer to do two things at the
same time. We may require the minicomputer to take in data once
a second while it is also doing some calculations or controlling
another experiment. This experiment shows how the computer is
used to run a main program and to also acquire data at the same
time. We will use the basic register increment program that we used
during the computer chelkout as our main running program and we
will use a shorter program to take in data and store it in memory
whenever we actuate the INTERRUPT pushbutton. The register
increment program is listed below:

oo4
001
140
006
000
104
0 1 3
000

Add lmmediate

Jump on a True Carry

Jump Uncondi t ional

oo2
003
004
005
006
007
0 1 0
0 1 1
012
0 1 3
0 1 4
0 1 5
0 r 6
017
020
021

000
001
002
003
004
005
006
007

0 1 1
000
301
1 2 7
104
000
000
0 1 1
150
000
000
301
1 2 7
104
0 1 1
000

006
oo0
004
040
1 2 7
104
000
000

LDAB
OUT3
JPUN UP

DOWN, DECB
JPTZ UP

This program loads register H = 000 and register L = 100 as ad-
dress pointers for our data storage file. The program then will exe
cute the register increment portion of the sequence.

The next part of the program is located in a different section of
the memory and it starts at HI = 000 and LO = 050. This program
will temporarily store the A register in E, input data from input port
1, store it in memory, return A from E and return to the main pro-
gram. Now load:

000 050 340
1 0 3
370
060
304
007

L o a d A + E
I n p u t 1 + A
Load A + Memory
lncrement L
L o a d E + A
Uncond i t i ona l Re tu rn

Start the program with a 005/Interrupt and then change the
switch register setting to 055. Now, each time the interrupt is
actuated, the data from the input port I input l ines will be stored
in memory, starting at location 100. Make a note of ydur data set
at the input l ines and actuate INTERRUPT. Change the data, note
it, and again actuate the INTERRUPT. After entering a few data
words, look closely at the incrementing register, output port 0. Do
you see any change in the rate of operation when you actuate the
interrupt? The computer execution of our short subroutine is very
fast and we do not see any visible change. Calculate how long it
takes the computer to run through the short routine starting at
location 000 050.

This experiment has demonstarted how we can perform two, or
even more tasks with the computer without any visible change in the
computer operation. This type of programming is called Interrupt
Programming since we interrupt the regular program, perform some
other task and then return to the main program.

Using the same main program, can you change the subroutine at
000 050 to output data from locations 100 and on up to the LED's
on output port 3? Hint: Only two instructions need to be changed.
We will, of course, only display the four bits, 0 to 3. Does the data
output agree with the data you just stored?

Exper iment No. 5 PROGRAMMABLE FUNCTION GENERATOR
An inexpensive, 8-bit digital-to-analog converter (D/A) such as

the Datel type DAC 98BI ($9.95, Datel Systems,Inc. , 1020 Turn-
pike St., Canton, Mass. 02021) may be used to convert each of the
possible 28 ot 256 input conditions to an analog voltage propor-
tional to the value of the binary input. As the input conditions
change, the output voltage also changes and this may be used to give
us complex waveforms under computer control. Programs are given
to generate a positive ramp, a negative ramp, a triangular wave and a
complex waveform designed by the user. Each of these programs
may be treated as a subroutine by removing the jump statements
that cause the program to repeat itself and inserting a RTUN or
return statement. The individual statements may then be called as
subroutines to generate avery complex set of functions, such as
three triangular waves, two positive ramps and a user defined wave.
This can also be done continuously or in a burst, by making the
program that calls the subroutines jump back and restart itself or by
halting it after one complete cycle through the program.

Positive Ramp Generator

I N C B
LDAB
OUT3
JPUN

Negative Ramp Generator
Rep lace the f i r s t i ns t ruc t i on w i th 011 , DECB

Triangu lar Wavef orm Generator

A staircase waveform is generated by incrementing in large steps
or by adding a fairly large number to itself a number of times. This
is shown in the following staricase generator program:

START, LDAI

ADDI

LDAB
OUT3
JPUN DOWN

OUT3
JPUN START

000 010
001 301
002 127
003 104
004 000
005 000

The memory may also be used to store binary values that are to
be output to the D/A converter. In all the previous experiments we
have only used the registers for data storage. Load the following
program into the computer and execute it with a 005/lnterrupt.

OOO 056 START, LDHI
001 000
OO2 307 LDAM
003 127 0UT3
0 0 4 0 1 0 l N c L
OO5 1O4 JPUN START
006 000
007 000

The output voltages now observed on your scope will correspond
to the voltages given by the binary values stored in the 256 memory
locations from 00 000 to 00 377. Stop the program and load 000
in locationsfrom 100 to 130. Restart the program with a 005/
lnterrupt. Do you observe these values as a voltage output on the
scope? Try to load some different values and observe them in the
same way. Can you get this program to output a triangular wave
from the data stored in memory? Other complex waveforms may
also be generated by using the memory in this way. We call this a
"look-up table" since the computer looks up each value and outputs
it to the D/A converter.

+ 1 5 V

OUTPUT TO
SCOPE

F I G U R E 1 O

Exper imen t No .6 CODE CONVERSION
Unfortunately, not all communication codes are the same. Radio

amateurs and some commercial communication systems use a five

bit binary code called Baudot. Most of the readily available character
generators for use in graphic terminals such as the TV typewriter use
the ASCII code system. Let's assume that we are receiving Baudot
code and we want to convert it to ASCII for use with the TV Type-
writer. We will input the five bits of Baudot code in parallel at input
port 1 and we will output the equivalent ASCII code on output port

000 010
001 150

UP, INCB
JPTZ DOWN

ANALOG TO
D I G I T A L

C O N V E R T E R
98Bl

O RADIO-ELECTRONICS 13

0 for visual check. Some of the equivalent Baudot and ASCII codes
are given below. We only need a few for this illustration.

however, 199 at the DVM which is less than the 256 possible states
for an 8-bit binary word in the computer. If we can convert the nine
BDC input lines to binary we will save storage space, and the resulting
binary code will be compatible with our D/A convetter that will be
used to display the data on our scope.

To interface the DVM to the Mark-8 we make the connections as
shown in the following figure. The nine data lines from the DVM go

to two input ports and the strobe line from the DVM, signalling the
end of a conversion, is used to interrupt the computer. The outputs
are the same as those used in the function generator experiment.

The program at the end of this experiment will control the data
acquisition by the Mark-8. Since we want 10 readings per second for
10 seconds, 100 readings must be taken. At the end of this time, the
Mark-8 will jump to a display program to display the data as analog
voltages on the oscilloscope. Comments have been included in the
program to make the operation clear for the user.

The data will not be displayed until all 100 samples have been
taken. Could you modify the basic program so that the data is con-
stantly displayed as it enters the computer? Hints: 1) first clear out
the storage registers and 2) let the interrupt from the DVM vector to
the data input and conversion program. Treat the display program
as the main operating program.

DVM Data Input and Display Program
0O0 056 BCDBIN, LDHI / ln i t ia t ize H address pointer
001 000 000
0O2 066 LDLI / ln i t ia l ize L address pointer
003 233 233
0O4 046 LDEI /Set up data word counter = 100
0o5 144 144 /1449 = 1001s
006 026 RESTART, LDCI /Ctear data storage accumulator
007 000 000
010 103 tNpO / tnput rhe DVM hat f -d ig i t (MSD)
011 O74 COMI /Compare MSD with 0
o12 000 000
013 150 JPTZ I INPUT /Jump on a t rue 0
014 022 022
015 000 000
01 6 3O2 LDAC /Nor = 0, program jumps here
O17 O04 ADDI /Add immediate IOOIO ro A
o20 144 144
O21 32O LDCA /Restore dara to C
O22 103 INPUT, lNPl l lnput 2 other digits
O23 310 LDBA /Store in B
O24 O44 ANDI /Mask out w. 01 7 to get LSD
025 017 017
026 2O2 ADDC /Add LSD to C
O27 32O LDCA /Store result in C
030 301 LDAB /Get data back from B
031 O44 ANOI /Mask out w. 36O to get middte digit
032 360 360
033 150 JPTZ STORE /Middte digit = O, store binary data
034 052 052
035 000 000
036 O12 RART /Data was + O, so rotare 4 t imes r ight
037 O12 RART /to shif t i t to the teast signif icant
040 O12 RART /digit posit ion
041 O12 RART
O42 33O LDDA /Store rotated data in D
043 3O2 LDAC /Get C back to A
O44 004 TENADD, ADD| /Add 10 to C for each digit in D
045 O12 O12 /101s = 12s
046 O31 DECD /Decrease digits in D by 1
O47 110 JPFZ TENADD /D ig i ts s t i i l te f t , toop th ru aga in
050 044 044
051 000 000
O52 372 STORE, LDMC /Load C to memory
053 060 INCL / lncrement memory address by l
054 041 DECE /Decrement 100 points counrer by 1
055 15O JPTZ DSPLA lt t E = O, disptay data
056 120 120
057 000 000
060 000 HALT /Hatt and wait for next DVM interrupt
061 1O4 JPUN RESTART /Restart data input after interrupt
062 006 006
063 000 000
12O 056 DSPLA, LOHI /Load H address pointer
121 000 000 -'122 066 LOOP. LDLI /Load L address pointer
123 233 233
124 3O7 OUT, LDAM /Get f irst Binary data word to A
125 127 OUT3 /Output data to D/A converter
126 060 INCL / lncrement memory address bv 1
127 150 JPTZ LOOP / l f L = O. re in i r ia t i ze
130 122 122
131 000 000
132 104 JPUN OUT l l t L + O, output nexr data word
133 124 124
r34 000 000

Experiment No.8 COMPUTER GAMES
The Mark-8 Minicomputer may be programmed to play games

since it can rapidly make decisions based upon new input data. One
simple game that can be played on the Mark-8 is a variation of the

BAUDOT
A 030
B O23
c 0 1 5
D O22
E 020

ASCII
301
302
303
304
305

As you can see,,there is no easy correspondence between the two
codes, so the computer will have to do some of the conversion for us.
There are two methods that could be used to convert the codes. The
lust one would input the character and then comp:ue it with all pos-
sible characters and when a match was found it would output the
correct code. This type of approach takes a great deal of memory,
about 46 memory locations just to convert the five letters above, and
it is also slow since our comparisons may be at the bottom of the list
and all the other comparisons must be made first.

The second approach uses the look up table method that we used
in Experiment No. 5 to store values in the memory. Since the
Baudot code has only five bits, we will neglect shifts in this example,
we know that there are only 1l 1ll2 different characters with octal
values between 000 and 037. We will use the octal value of the
Baudot character as a memory address, thus using computer memory
addresses 000 to 037. Now each input character has its own memory
address that is associated with it. We now insert in each of the
memory locations the ASCII equivalent of the Baudot character
which serves as the address. If we were to look as a section of
memory we would see:

Memory address
0 1 6

Data
303

020 30s
o21 332
o22 304
o:,

030 301
Now we treat each input character as if it were a memory address.

We get the equivalent character out of memory and output it to out-
put port 0. The following short program will do this:

000 056 LDHI
001 000
oo2 103 lNPl
OO3 360 LDLA
OO4 307 LDAM
005 121 oUTO
006 OOO HALT

Now the conversion program requires 32 storage locations for the
look-up table and only seven program steps to do the conversion.
We can convert all 32 characters with only 39 program steps. With
the compare-type program it took more than that just to convert
five characters. Using the input port 1 lines, try the above program
with either the five Baudot code words listed or write your own
code.

The longer program with the compiue instructions is often called
a command decoder type program. It is useful to input a keyboard
character and perform some action in many programs. The command
decoder decodes the key and jumps the program to a subroutine or
other program to perform some other action.

Exper iment No.7 DATA INPUT AND DATA DISPLAY
In some experiments we wish to take data with an instrument, an

ohmmeter, a voltmeter or a thermometer. But we wish to take the
data at a rate which is faster than we can possibly write it down for
later use. Let us assume that we have a digital voltmeter (DVM) and
we are using it to measure voltage changes in an experiment. We
would like to take 10 readings a second for 10 seconds. This is quite
a bit faster than we can possibly record the data by hand, so we use
the Mark-8. We will assume that our DVM converts at the rate of l0
readings per second so an external timer will not be needed.

The voltage changes will be significant enough so that we will be
able to use the most significant two and a half digits of the DVM for
data input to the Mark-8. Unfortunately, the 2% digits use nine
binary bits of information, four each for the BCD digits and one for
the half digit which may be either a I or a 0. The maximum count is,

14 RADro-ELEcrRoNrcs o

old "take-away" type of game, Nim. Nim is played by specifying a
set number of sticks to be used, toothpicks, pennies or any conven-
ient indicator may be used, the number being22,23 or 24. Once the
the number of sticks have been set down, players remove 1,2, 3 or 4
sticks until only one is left. The player forced to take the last stick
is the loser.

The program given at the end of this experiment will consistently
win at Nim. After loading the program into the computet, arrange
the number of sticks you have chosen and indicate to the computer
the number you will be playing with by using input l ines D2, D1 and
D9. The number of st icks is entered as22 = 2 (010), 23 = 3 (011)

and 24 = 4 (100) where the binary number is entered into the com-
puter. Be sure that all the other input l ines have been grounded.

Start the game with a 005/lnterrupt and the computer will indicate
on the output port @ LED's the number of sticks it wil l take away,
again in binary notation. Now load 300 on the switches in the switch
register and after you have entered your next move on the input
lines, depress Interrupt and the computer will indicate its next move.
Continue until only one stick is left.

This is a simple game type program that makes decisions based
upon the number you entered. Can you find the two decisions in
the program? The computer assumes that you are an honest player.
Suppose that you restart the program and you cheat. What does the
computer do? It has not been programmed to detect a cheat in the
game. Could you add to the basic program to detect a cheat and
halt the program?

Programs could also be written to play more complex games such
as Tic-Tac-Toe, but since more decisions must be made, more
memory space would be required.

017 bO6
o20 000
o21 000 HALT Game ends here

Other applications of the Mark-8 minicomputer
We have seen in the experiments how the Mark-8 can input and

output data and how it can make decisions based upon input data
and stored data. In the text of the article we have also seen some of
the unique features available for the user to make using the Mark-8
easy and fun.

As you probably realize by now, there are many more applications
and experiments that could be done with the Mark-8. This section
will describe one application and will l ist some that you might be
interested in trying.

Let us develop a sophisticated security system around the Mark-8.
We will assume that we wish to protect a home or an apartment and
that we have three doors and four windows to monitor. We would
also like to use the computer to turn some of the house lights on and
off in a sequence to simulate to those outsiders, the presence of
someone at home. We must also sound the alarm if power fails.

Seven switch closures, one for each door and window are con-
nected to seven input l ines on input port 1. The eighth line is con-
nected to a l-Hz clock that is used by the computer as a timer pulse.
F-ive output l ines from output port 4 are connected to solid-state
relays to turn house lights on and off according to the bits present
at the output. We use a low-power electromechanical relay on one
of the remaining output l ines to actuate the alarm circuit which is
battery powered. The computer monitors each of the switches on a
continual basis and it also senses the l-Hz clock. After 1800 clock
pulses, or every Yzhour, the computer outputs a preset pattern to
the solid-state relays to change the lights that are on and also those
that are off.

The program to do this is not very complicated and we could
have simplified it by placing all the switch closures in parallel to the
computer. This would leave six open input l ines that might be used
for a digital keyboard input to make the computer also act l ike a
digital combination lock.

Some other possible applications include:
1. Minicomputer-calculator interface to allow complex functions

such as log, trig functions and roots to be programmed on regular
four-function calculators.

2. Completely automated dark-room system. Control of times,
temperatures and solution valves.

3. Educational teaching unit for beginning programmers.
4. l^aboratory experiment control and data acquisition system.

5. Model train controller and scheduler.

000 026
001 004
oo2 103
003 024
004 001
005 121
006 000
007 103
0 1 0 3 1 0
01 1 006
o12 005
0 1 3 2 2 1
o14 12',1
015 021
0 1 6 1 1 0

Nim Program

L D C I

I N P l
S U B I

our0
INPUT, HALT

I N P l
LDBA
LDAI

SUBB
ouT0
DECC
JPFC INPUT

NOTES

O R A D I O - E L E C T R O N I C S 15

J

CD

],

I
o
rh
m
o-{
f,
o
z
o
a

o

2 PHASE 5OO kHz CLOCK

R2
22051

t/47400 t/4 740,0 N @

o-F@

DEN
@

cco @
ccr @

oo@

o ' @

or@

o.@

oo @..
o u @

ou@

o r @

XTAL 1
4000.000

k H z

o

1/4740,0

r/4 74OOY8

t

rNr @

rNr @

t o

R 1
220'l.

@

1 0 ̂ - - 1 1 1

EACH r/6 74LO4

sl ^\-^ a

A L L O T H E R
C O N N E C T I O N S
= +5V
FOR rC2 & tC3

R 5
I K

+5V

+5V

3 4

1/67404
1t6 7404

8 I

12

r 3

; * "

@ crno

O -nu

8 U S

tc 'st:
-)

D0 Dl 02 D3 D4 D5 06 D7

o@o @@@ @@,NPUTBUS

rc3 ttz7476

tcrt- t ta 7404

trzT4lO trzT4OO

,03-74oo

trcT4o4 traT4oo

rrsT4lO

trqT4OO :raT4OO

aJ.^^ Fr s@s.'*{:Jts | ,,;--f;

rrc7404 va74LO4

M 7404 l,,o7ass
0,1 o? | rrqT4OO

c
CK

tc8

D s o

rrc74o4 trsT4lO
1 2

ua7404 rrcT4OO
rc5

tn74OO

trqT4OO
12

l 0 1 1

ua7404
t c l t

EAcH trc7404

8

i c 2 3 c4 \ L C c6

trz 74OQ

SCHEMATIC _ CPU MODULE

.PU BOARD

WRITE OUT

e f f i 6

e
@

@
c

o
@

@
@

@
o

@

o

c3 c?
0.01 R3 0.01

DEP N/C

EXAM N/O

SING STEP N/C

S I N G S T E P N / O

RUN/STEP N/O

RUN/STEP N/C

I N T E B N / O

I N T E R N / C

5V

rl-
+5V

+5V

R 1

1 0 K 1 0 K

71 5

1 3 5

DY

t

R9

1 K

R 1 0

1 K

R 1 1

1 K

R 1 2

1 K

] , "

. ,

+5V

R 1 6

1 K
3

R 1 5
1 K

EXT LAL

EXT LAH

LAH

D7

@

e
@

@
@
@
@
@
@
@
@
@

+5V

1 2

@
R

+5V

+5Vo
f,

I
I
m
r
m
c)-{
I
o
=
o
a

J

{

@
) JUMPER - REMovE FoR usE w t rH

9- EXTERNAL DEVICE SUCH AS KEYBOARD.

I
REourREs Pos EDGE

NOrE tC3 THRU tC7 ane 7400 o
D 1

@
D2

o
D3

@ @
A12

@
A 1 3

o
cc0

@
ccr

@

R7

1 K

R6

R 1 3

1 K

R 1 4

R 5

1 K

R8

S C H E M A T I C _ M E M O R Y A D D R E S S / M A N U A L C O N T R O L M O D U L E

J

@

f,

L,,,

o
rh
t-
m
o

; P-4
o
z
o
@

o p-3

MEMORY DATA'

I N P U T P O R T O * *

I N P U T P O R T 1 * *

P-2 MEMORY DATA'

P.4 INPUT PORT O**

P .3 INPUT PORT 1* *

B

c

D

Deru

1uo- t
i

MD-6

I
MD-5

L MD-4

(o '

10u
l D 5
L o +

("
1 0 6
l o 5
L o a

r MD-3

) uo-z

) rvro-r
L uo-o

(o 3
l D 2

t:;
(D 3

lo ,
l o t
L D O

P . ' I I N T E R R U P T I N S T R U C T I O N P O R T '

t 0 1 1 t 2 1 3 1 4 t 5 t 6 t 7

ttqT4OO

@
@
@
@
@
@
@
o

9

*BoARD Top coNNEcloNs I r r , r r r . re coRREcr NUMERTcAL**BOARD StDE CONNECTTONS J SEOUENCE ON BOARD

D7

D6

D5

D4

D3

D2

D 1

DO

DATA INPUT TO CPU

JAM*

SCHEMATIC _ DATA

o
INPUT MULT IPLEXER MODULE

t c5

8267

51 SO

@
@
@
@

DATA INPUT MULTIPLEXER BOARD

t tq74O2ruT4OZ

I N

M E M O R Y A D D R E S S D A T A M D O

M D l
M D 2
M D 3
M D 4

M D 5
M D 6
M D 7

@@@@

R/W OUT

R/W IN

(F R O M A D D R E S S
LATCH BOARD)

+ 5 V H I

MEMORY DATA OUT
TOP OF MODULE

P_2@
D7

@
D5

@
D3

@
D 1

TO THREE ROWS]
o; 'il;il'o;i'l;t J

EourvALENr coNNEcrroNs

TO

t l
l l
l lA L L E L

rc's

\
2 t

PAR
A L L

READ/WRITE

N A B L E L I N E

L I N E

@ @
c

@
@

@ 1 1 4
7400

@l
@[
@f
@)

ou@

oo@

or@

oo@

1 2

1 / 4

7400

DATA
I NPUT

o
u
I

o
m
r
m
c)-{
f,
o
z
6u,

J(o

@
I O N S

S E L E C T J U M P E R S *

\-t

JUMPE R -

\-uu
l

To ' t , To ' t - [, ,o , . ,=
= J_cz I

-nu To't - |

SCHEMATIC _ MEMORY MODULE

A . B J U M P E R S *

* S E E T E X T F O R J U M P E R L O C A T

B LATCH'

o'l
D3 I

) OUTPUT B*oo I
D6)

,2

1 1

a)

I
o
ft
r
m
o
-l
f,
oz
o
@

a

DO

D2

D5

D7

o t l
D 3 t

) oUTPUT A*
oo I
D5 / ,

OUTPUT PORT JUMPER SELECT

1 2 3 4 5 6 7 @
DO D1 D2 D3 D4 D5 D6 D7

@@@@@@@@
7442

O*uu
-CONNECTIONS ON SIDES OF BOARD - DATA OUTPUTS DO-D7
ARE IN THE CORRECT SEOUENCE Of ! S IDE CONTACTS B c D D e r u

@@@@
SCHEMATIC _ OUTPUT LATCH MODULE

OUTPUT LATCH CARD
ool
D 2 [

os I
oureur e.

D7)

OUTPUT
PORT
JUMPER
SELECT

DATA OUTPUT

1 2 3 4 5 6 7

tct2

A B C D

o

L O A D D R E S S

D9- R9

H I A D D R E S S

TOP OF CARD

MEMORY DATA

@o'

@ou

@ou

@oo

@o.

@o,

@o'

@oo

@..'

@ cco

@nr:

@ o ' ,

@D

@c

@B

@A

,

S C H E M A T I C _ L E D R E G I S T E R D I S P L A Y

/
D3

/
D4

/
D 5

/
D 7

R 3

M D 7

MD6

MD5

MD4

MD3

MD2

M D 1

MDO

R 5

/
D6

/
D8

R 7

@ *uu

TO IC'S & LEDS

@
@
@
@
@

o

I
o
m
r
m
o-l
ll
o
z
C)
o

N
J

B

c

D

DEru

OUT

NOTE: ALL RESISTORS 2205- l OR 4705-1 1 /4W

ALL DtoDEs MV-5O on MV-5O2O leo 's
rc1 rHRU rc6 ARE 7404

D l R ' l

/

D l Z R r 7

D 1 9 R l o

Dl? R12

P 1 1 R 1 3

D 1 9 R 1 s

D 1 g R r 6

t ra 74OZ L E D R E G I S T E R D I S P L A Y

TO 17.

TO 16.

TO 12*

t

T O l l *

CONTROL REGISTER

LOAD ADDR HI (LAHI

4*
roEx r raH@

LOAD ADDR LO (LAL)

f i * roEXrLAL@

DEPOSIT (DEP)

- -
ToDEPN/c

@
_- sr4
= o___-r ro DEp N/o

O

EXAMINE (EXAMI

- -
r o E X A M t r c @

_- si5
O-_..+ TO EXAM N/O

SINGLE STEP (SS)
TO SS N/C

r--t- Sro
J-

TO INT N/C

_-
s i7

@
@

@
o

| 17V AC

r--+ TO SS N/O

INTERRUPT (INT)

r---o To INT N/O

s t l

INT/JAM

f<'*roJAM.

RUN/STEP

__-
roRUN/ssN/c@

_- sio
= o'--.+ ro RUN/ss N/o

O

.ON INPUT MULTIPLEX BOARD_ALL OTHERS TO
ADDR ESS LATCH/MANUAL EOARD AS NOTED

CONTROLS:

D I\ mv-sozo

R I
22052

+5V

SCHEMATIC _ SWITCH REGISTER

PRINTED CIRCUIT

BOARD

PATTERNS

O RADIO.ELECTRONICS 23

t
jf

o
oo
oo
oa
oa
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
o o -
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
o
o
oo
oo
o
oo
oo
oo
oo

o
o

:?
I
c

f f i l I t f

f r f f f f l

ooc

rf f f l r f f
r | | t...1

I
/

| | | | (r,,
I f t f f t ! f

c

! f f f l f l

f ! f f ! f f

co
f t

C O

o

oc
t l

oo
c

oCx
{
D
?

GPU IOATD

It
u

24 RADto-ELEcTRoNtcs o

CPU BOARD - S IDE A

I I f t ! !f f f

F-- Ct

i r/t'iYrr

m
-gD<

,/

. . t t t t t t t t t

{,IfI , rfFri l l f i irr lf f

a-a

] ' o
a-r-

-
f t f f r ! l

--

(9..F -c
4

f-.crrfmr\ frr l
f r f f f f r \ r , ,

,r,,1,
2 €4,

f t f f
/ l f f f
a''t

Ga
a-
ts
ts
F

CPU BOARD _ S IDE B -

. RAoro-ELEcrRor.trcs 25

t f l

I

! f
-)-<

K..

f f I

I

C
f f ! I

t f tnf f
f # i I
f ab{ t j$4r
\ 3
? ' i ' t
13. ?

t f i

ic .
n\
i \

arb
{
D
?

a)"4
aFO
aFO
ara

CPU BOARD - HOW FOIL PATTERNS OVERLAP

26 RADto-ELEcrRoNtcs .

I
a l
l a
l a
a t
t t
l l
t f
o l
i a
a f
l a
l a
f l
l a
l r
aa
l r
t a
aa
t l
t f
l a
t l
l a
l l

t l
t l
ao
f a
t l
t l
I
a
a a

Fd
;=
F-i
l

l=

I
i
a
I
I
t

t(tt
E
ctt
a

a€

1
I
ltflf+r+

lf,r,,,rlE
i
dc--{

o._s{

F3{

cpu lo t t t

???t
J J] J
C ' T \ , F -.a*a

CPU BOARD - PARTS LAYOUT

o RADro-ELEcrRoNrcs 27

F

atar-{
o-

-
- t -

. { l
Oa
o-
a)a

F
oa
a-

H

L
E-.<
=-1-

S
C - l L-EH

I -'<

IE
-- |

---l
t - I -

t I {

0
I
a
i
t
I

(Y .l-=
a a
-

28 RADto-ELEcrRoNlcs .

ADDRESS LATCH _ SIDE A

- -
O O
O -
O O

- -
- -
- O
. O

-
O
O
-

-
O
-

,-
l o
l -
l -\--)

O

-
O

-
-
O

O
-

O
O
O

O
-
O
O
-
O

-
-
O
O
O
O

-Fra

O
-
O
O
-
O
-

O
O
-
-
-
(t
-

-
O
-
O
-
-
O

O
-
-
-
-
-
-

-
O
O
-
-
O
-

- -
O O
O -
- O
- O
O O

O
e
O
O
-
-
O

-
-
-
-
O
-
O

O
O
-
-
-
-

-
O
-
-
O
-
-

O
-
O
O
O
-
O

c- alC o
to -

V

O O
oo
oo
oo
oo
O O

O RADIO.ELECTRONICS 29

ADDRESS LATCH _ S IDE B

D
E
3
t
;
t
t

?
D
{
o
I

F
oa
oa

ilt RADro-ELEcrRoNrcs o

t ,

ta"

ADDRESS LATCH - HOW FOIL PATTERNS OVERLAP

M

F

G'

g
2
o
G

b
uJ
J
ry
I
o
G

o

A B C D E F

F
l
o

5
P
E

r
I

E
(J
F

J

oa
IIJ
G
o
o

fFl ,z

t D S r t t t L A T C t I

G g a

I

TTTT,I,

ooooooao

oooooooo oooooooo
oooooooo oooooooo

t 0 I I 0 l
o o { o { o
l a
{ {

:l
: \

o o
o o
o o
o o
o o
o o
o o
o o
a o
o o
o o
o o
o o
. o I
O O
oo
oo
oo
oo
oo
oo
oo
o
o
o

l { C t t - > { D g

o o
o o
o
o o
o
a a,A
a o
o o
o
o
o
o
a
a
o
o

- - -
E=

r+r
ar-Ca

jr<'a
1.r{a

o a -
H

o{
.L

a{
H

H

{ ara

2- {
2 i i
! ,
t t
{ C

I
{

: : ;
D ; t
a { c
C , - {

:
t
xo - l l -

- - l l
- - t \ -- - \.-_ _ _-)

\--t

DATA INPUT MPX BOARD _ SIDE A

32 RADro-ELEcrRoNrcs o

O
-
-
O
O
O

-
-
O
O
-
-

oo
oo
oo
oo
oo
oo
oo
oo

o-
o-
a)-
F
o-
o-
oa
F
o-
F
ts
o-
t-
o-
o-
o-
o-
Oa
o.a
oa
o-

GO
oa
a-
a-
a)-
aFa

h

o
o
o
o
o
o
o
o

l
-
-

b

O O

U
- - t l a

O -
- -
O -

O -
O -

I
5

= F
ts
Oa
a)-
a-
o-

-
O
-
-
-

O
O
-
-
O
O
-
-

DATA INPUT MPX BOARD _ SIDE B

o RADro-ELEcrRoNtcs 33

I
o
a
'{
F

t
o
I
{
c

5

D
I

O.a
oa
O.a
o{
F
o{
}.a
F
o,.
ara

-
t
?
i

x

a.a
O.a
o'a I
oa
o,0
L

o{
F
F
OrO

DATA INPUT MPX BOARD - HOW FOIL PATTERNS OVERLAP

U RADto-ELEcrRoNtcs .

l t l t a t r r
r a a l a a l r

l a r r r l t f
l f a t l t a a

g t
{ c

I
{
F

E t r C E
A { a d o

r g
O o
a
.rl

o

!l
2\

?
I

I
a
E

t . ' l C f I - > . f t O

, } .p<

. O

aFr'a

f

a
i
a
a
a
I

t

I

.
I
I
I
a
:
t
;
t
I

t
t
a
I
I
a
a
a

I
a
I

I

I

a
I

a
a
a
I

l=t
l:l
l:l
IIJ

i

,
* d
, i l

! .t - t
{ C

I.{

: : ;
l : t
I
a ! {

:
s
x

i t
a
I

s
a
I
I
a
a
]
a
a
I

t

I
r t
a
a
I
a
a
a
I

)
o- B-o

r RADIO-ELECTRONICS 35

DATA INPUT MPX BOARD - PARTS LAYOUT

: ;
r r
o .
t o

a o
o o
o o
o o
O O

oo
oo
ao
oo
oo
oo
oo
o o
o o
o o
o o
o o
o
o
o
o
a
o
o#
o
o o
o a
o o
o o
o o
o o
o o
a o
o o
o o
o o
o o
o
o
a
o

o
o

o
o
o

c

o
c

-
-

t
o

o o
o o
o o
o o
a o
o o
o o
o o

<) O O
< ' O O

36 RADro-ELEcrRoNrcs .

M E M O R Y _ S I D E A

f l l fmf f t l f f r f ! !

f t i l i l t f

f f ! i l r f f

f f f ! f t ! !

I t f I f I t f

f I f f i l I l

! f f l l f f f o I I f f f f ! f

f f r f t l f f

r f f f t i l l

f f f f t l

i l I t f f ! f

f f f f

f f r

f i l f t I f I

! f ! f t f f r

I t f l i l t l

f l f f f f t f

I t f f f f r f

f f f t f t f f

f f l f t l l f

rrr f f t f l
f f ! f t f f l

l l f f l f l f o f l f f l f l f t f l f l f l l

f f f l l f f f

f f r f l l l l

f f ! l f ! f f

fMl f f f c

l ! f f t f f !

l ! l f f l I ! o f f f f f f

l f f ! f ! t f i l f f f f f f o ! | | f f f t l

c f f f f l f f l ! | | f t f r l

f ! f f t f f f

o
o
o
o
O
o
o
o t f i l t f f f c rfrf l f tr

f t ! ! f t f r ! f t f f f f f c t f fMt l

! f f f t f r l f f f f t f f f f f ! f t ! r f

I

f f f

I I I I I

f f f fr-
ts
Oa)
ara
a)-
o-
o-
F
O',4

c
I

c

f f f f f ! t f c f f f t f l f l

! ! i l t I f f

! t f f f f r r
t f f f f i l f

f f f f t r f f f l f l t f r l

I f l f f r f f f r f f f r l l f f t f f r f f

f f i l f r r l f f t l t r f l f ! f l i l f f

O

-
a-

-
ar
f

o

-.
-
-
O
-
-

4

oa
Ga
ts
ts
O'
Oa
a'-
O'
ata
oo
a-
oa
Oa
Oa

O
O
O
-
O
O
O

o
o

o
o

o
o

o
o

M E M O R Y _ S I D E B

o RADro-ELEcrRoNlcs 37

O
I
a
o
a
o
o
a

3
t
t
o
t

H
Oa
F
F
a{
ara
O.a
F
l{
oo
oa

MEMORY - HOW FOIL PATTERNS OVERLAP

38 RADro-ELEcrRoNtcs o

g

g
z
o
G
F
C)
UJ
J
ry
o
o
E

o

t x

P2a a a a r a a t
a a l l a r l a

F
f
o

J
o
F
E

G

I

G
o
=
UJ
=

R2l

J

I
o u T

o-Rt-{
o-R2<
a'-R3{
O-R4{

?
c3

'tt9* t tczt
o. R14

tc28
rR15

rc29
o R t G

' tT* t t ' t t t t t
o R 1 2

tcr T

l c l

! x r t o l
r f x o t Y

JUMPER*

rc34
illr e

?'?
I A

,J I
JUMPERS*

tc8

a a t a t a l t t l

l c l 49a5 { 1 g 1 g l C l 7 a l C 1 2

TEXT

a l r t t a

m0{

*SEE

t f a

G 3 1 { } C {

a t r r t a a N
l a a l l f a t t t l t t l a t l t a t a i a a r l t f a t l l a a t t t t t a a

o
C
{
I
C
{

I
o
t
{c
t

o o
o o
o o
O O
O O

o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o

O O
o o
o o
o o
a o
o o
o o
o o
o o
o o

40 RADro-ELEcrRoNlcs o

OUTPUT PORTS - SIDE A

oooooooo oooooooo
oaoooooa oooooooo

f f r
f ! l

f f f l

! ! f f

f f I

I f f

f l l f

I I I I

l ! l f f f l f oa
Oa

f f r(:_
F
o-
o-
oa
ts
a-
o-
o-
a{
F
oa
o-
oa
o-
o-
o-
o-
o-
o-
o-
Oa
oa
oa
o-
o-
ara
o-

O
O
-
O
-
O

-
-
-
-
O
O

-
-
-
O
-
O

-

il

f ! f

f t l O
-
O
-
-
-
-

t ! l l

| | f

t f l

f t r f f l f ! f l

I t f f f f

o-
o-
a)-

oooooooo oooooooo
oooooooo oooooooo

! ! f l !

o-
o-
oa
oa
F
G'
al{)

OUTPUT PORTS - SIDE B

o RADro-ELEcrRoNtcs 41

o
C
{
t
C
{

t
o
I
{
t

F
F

Oqf

F

F
F

F
F
ts
IF
F
;l
H
ara
H
F
F

F
F
F
F
F

F
F
?a
ts

OUTPUT PORTS - HOW FOIL PATTERNS OVERLAP

42 RADro-ELEcrRoNtcs .

i

\
trt
-{

o
c{
t
c-{
C"

o
-c
.a
I
c
'l

I
o
I
{
I

c',:t

-

?
E
*

I t
a a
a a
l a
a l

l l

t a
a l
l l
a a
a t
l a
l l

a l
l a

a l
t a
a a
f l

l a
l f

a l
t a
a a
a t

3 +\ ' s
l\, I

I
I

a=i
=#'fr^

=
'

a

P
5

o RADro-ELEcrRoNrcs /li|

OUTPUT PORTS - PARTS LAYOUT

l l ?- t t

i ! r
7 | r
D {

t

o

oo
oo
oo
oo
oo
oo
oo
oa
oo
oo
oo

o
o
oo
oo
o
oo
oo
oo
oo
o

M RADto -ELEcTRONIcS o

L E D R E G I S T E R D] S P L A Y _ S I D E A

oo
oo

oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo
oo

oo
oo
oo
oo
oo
oo
oo

-
O
-
O
O
O

-
-
O

O
O
-
O
-
-
-

-
-
-
-

O
-
O
O
O
O

-
-
-
O
-
O
-

O
O
-
-
O
-

-
O
O
O
O
-

-
-
O
-
-
-

O
O
-
-
O
-

TO
to

to
tc

to

IO

tc

IO
rl

TC

IO

I
O
-
O

O
O
O
-
-

-
O
-
O
O
O

I'
I.

-
-
O
-

O
O
-
O
O
-
-

t'
I.

LED REGISTER DISPLAY - SIDE B

o RADIo-ELEcrRoNtcs 45

l l 7- t t

i 2 r
? | l
D {

I+
o

o

oo
oo
oo
oo
oo
oo
oo
oo
ao
oo
oo

o
o
oa
o l
o
o.t
oo
oo
o f
o

o

o

o

/tG RADro-ELEcrRoNtcs o

LED REGISTER DISPLAY _ HOW FOIL PATTERNS OVERLAP

T
+
a

I

t l ' .
: r ;
; ! r
7 | r
D

I

l ' l

a a
l l

f l

l ,

t l

l a
a t
l l

a l
r l I

a
aa
a l
a a

et
t\t

-g

o
I\J
t\t

tr
t$
@

{l{'
{r-3-----r

(^t
-

a.Fts--t\,
l{.

0 0 >
= - ' -
Ee5
=il9
= - m

= u ,
U'

=
m

Ts'-i-

LED REGISTER DISPLAY - PARTS LAYOUT

o RADro-ELEcrRoNtcs 47

tl8 RADro-ELEcrRoNfcs o

