L))

Check for
updates

The DINKIAC I—A pseudo-virtual-memoried mini—For

stand-alone interactive use

by RICHARD W. CONN

University of California
Berkeley, California

INTRODUCTION

The past three years have witnessed the development
and sale of a large and unanticipated number of small
general purpose digital computers. These machines—
the mini-computers—originally intended for real-time
use in applications such as production control, now
serve many diverse functions, ranging all the way from
data buffers to the central processing units of small
time-sharing systems. One trade journal even reports a
sale to a home hobbyist claiming that initial costs are
comparable, and upkeep less, than for other “recrea-
tional” equipment such as boats or sports-cars.

Several manufacturers have offered a basic machine
with four thousand eight or twelve bit words, and with
teletype I/0, for under ten thousand dollars.!> Because
of keen marketing competition and recent developments
in integrated circuit technology these prices are con-
tinuously dropping. Memory costs, however, have not
kept pace with the decreased logic costs brought about
by the new IC’s. Before truly spectacular price drops
can be made the cost of memory must be reduced.

Memory in the above context evokes images of un-
delayed random addressability by word, or, more
specifically, of magnetic cores. Yet if we consider com-
puting systems generally, core memory represents but a
small percentage of a typical installation’s total storage.
High core fabrication costs have led—in all but the
tiniest systems—to the utilization of memory hier-
archies. Devices most commonly comprising these
hierarchies are, of course, the familiar magnetic cores,
drums, disks, and tapes.

The questions to be examined in this study are: How
cheaply can a machine adhering to storage hierarchy
principles be built? What will it look like? and What
good is it? To be in any position for viewing either of
the others we must first address ourselves to the ques-
tion, ““What will it look like?” To do this the design of
the Dinkiac, a machine meeting the implied constraints,

will be summarily described. Explicitly stated these
constraints include cheapness, component availability,
and completeness in the sense that the user will not be
required to purchase additional hardware. Once the
Dinkiac design has been outlined, its usefulness can
be assessed, its performance and architecture confirmed
by simulation; construction details and alternate
features may be presented, and its cost ascertained.

THE DINKIAC

Physically, the Dinkiac will appear as a typical
keyboard—cathode-ray-tube display terminal. It will
consist of a typewriter-like, 64 key, keyboard; a small
CRT with a display capability of up to 84 characters
presented in seven rows of twelve characters each; a
row of lamps and switches; a single track low quality
tape cassette recorder; four magneto strictive delay
lines—all packaged together with the necessary register
and logic components.

With its 16 bit word size the Dinkiac will appear to a
machine language programmer as one of the larger
minis. A word will represent data as either a single
fixed point binary fraction in two’s complement form,
or as two eight bit character bytes, the last 6 bits of
each conforming to USASCII standards.

Each instruction will comprise one full word in a
fixed format with the first four bits (0-3) for the opera-
tion code; bit 4 a possible index register designator;
bit 5, an indirect bit; bits 6 and 7, a page (delay line)
address; and the last eight bits (8-15), the address
within a page of one of 256 sixteen bit words.

Main memory will be made up of four magneto-
strictive delay lines each storing 4096 bits. These lines
will have a bit rate of two megahertz for a maximum
access of a little over two milliseconds or an average
access of approximately a millisecond. Each of these
lines with a capacity of 256 words will be said to store

2 Spring Joint Computer Conference, 1971

a page of information. Processing may take place in
any one of these lines concurrent with an exchange of
information between secondary storage and some other
line, not including the first, or page zero line. (Many
readers will challenge the wisdom of choosing delay
lines over shift registers. The latter has a speed ad-
vantage as well as the greater potential for cost reduc-
tion, matching decreases in the other IC’s. There are,
however, no large cheap shift registers currently avail-
able, and since it is our intention to show that a cheap
instrument can be immediately constructed from off-
the-shelf components, we are forced to choose the
moderately priced and readily available delay line.?)

The previously noted cassette recorder will provide
secondary storage; a single tape retaining information
in one of 128 blocks of 256 words each. Bit storage and
retrieval rates will be around three kilohertz fixing
page transfers at around one and a half seconds. The
source and adequacy of these speeds will be discussed
in the simulation section.

As originally conceived, the Dinkiac included hard-
ware for automated page swapping, thus inspiring the
notion—echoed by the paper’s ftitle—of a virtual
memory machine; the virtual space being the size of
the tape or more accurately the number of tape blocks
times the number of words in a block, i.e., 32K Dinkiac
words. Memory addressing was to have employed a
page register-associative search scheme which operated
in the following manner: Three (because page zero is
not swappable) seven bit page address registers were
loaded under program control. An instruction pointing
to one of these registers (with the delay line address
bits) referred to the tape block indicated by that regis-
ter’s contents. The instruction’s address field indicated
one of 256 words within the page. The requested page
may or may not have been physically present in some
delay line. Three seven bit registers were to compare
their contents with that of the indicated page register
and, if found, switch in the associated line. Because of
the great disparity between word access and logic
switching time the hardware for this associative search
need not have been fast. If a specified page was not in
any of the delay lines it was to have been retrieved from
the cassette and stored in some line according to an
algorithm which first checked sequential delay lines to
find one in which the dirty bit had not been set. (The
dirty bit was set—by the memory store signal-—for any
line which had been written into.) If all lines were
dirty one line was selected and written out before the
requested page was fetched. If program execution was
delayed awaiting the fetched page, the program counter
was stored and control transferred to a preset interrupt
location. The described addressing scheme is shown in
Figure 1.

Unfortunately this automation accounted for more
than 20 percent of the total logic costs. In addition the
primitive page swap algorithm may have proven un-
satisfactory and required additional commands or even
a complex sequence initiated from a read-only memory.
In any event, the logic has been reduced to near mini-
mum and any automated page swapping will now be
under software control.

It is assumed that this operating system software
will minimally include a keyboard input and display
program as well as a cassette directory and search
routine. Transfer instructions and busy flags will
facilitate its operation and attempts to execute instrue-
tions from pages in the process of being swapped will
still effect a transfer of control to the interrupt location.
The inclusion of a fixed memory interrupt location is
the primary reason for not swapping delay line zero.

While the cassette’s primary function is to provide
intermediate storage it also doubles as a cheap and
convenient source of input/output. Initial input, how-
ever, is entered by way of the alphanumerie keyboard.
Depressing a key will enter an encoded character into
an eight bit keyboard buffer, turn off a console lamp,
and set a one bit flag register. This flag may be inter-
rogated by a running program and is reset—along with
the lamp—Dby transferring the contents of the keyboard
buffer to the accumulator. Striking a key will not enter
a new character into the buffer while the flag is set.

Visual output is direct to a CRT from the first 42
word locations of the zero or non-transferable delay
line. These words are gated sequentially in pairs
(modulo 21) into a 32 bit output buffer on each cycle
through memory. The low order six bits in each of the
four bytes are, in turn, used as an input to a small
read-only memory. This memory in conjunction with
an appropriate .counter and shift register provides
serial output for modulating the CRT’s “Z’’ or intensity
input. These components together with a character,
line, and row counter, and two deflection amplifiers
and digital to analog converters, constitute the output
device. It should be noted that the memory itself pro-

Instruction Word

1,2, ”
or 3 '
page / sssoctatsph | [::_—_—_—_—_"—‘]
De; Line 2
address registers| | :’:.____ __;:I
registers| | Delay Line 3

Figure 1

The DINKIACI 3

vides for display buffering and that all information is
retained in character format. Scan conversion from the
32 bit buffer is performed as needed. Since it is possible
to change characters in the output portion of memory
before they have actually been displayed, it is antici-
pated that display programming will be handled as a
function of the machine’s interactive use. The most
obvious example is provided by the displaying of a key-
board input message.

An operation panel located between the keyboard
and display tube includes ‘power on’ and ‘interrupt’
toggles, ‘start’ and ‘go’ buttons, a five position rotary
switch, and eighteen display lamps. The start button
clears all registers except the program counter—into
which the start address (64),, is forced—and loads tape
block zero into delay line zero. Once block zero has
been read the machine will begin instruction readout
from the start location. Depending upon the state of
the machine, depressing ‘go’ will either initiate a read
of the next instruction—from the location currently
specified by the program counter—or begin the instruc-
tion execution. The interrupt toggle will set or reset an
interrupt step mode flip-flop. When set, this flag will
force a machine halt after each instruction read and
after each instruction execute. If ‘go’ is depressed while
halted following a read, the machine will proceed to
the execute. If it is depressed after the execute—and
without a reset from the toggle—the program counter
will be stored and the next instruction will be taken
from the interrupt location.

The interrupt arrangement permits program stepping
in one of two ways. For possible machine malfunction
or difficult logical sequences the display lamps may be
used in conjunction with the rotary switch to inspect
the contents of the major processor registers. For more
routine debugging, the user may choose to enter a
subroutine which will convert and store relevant
registers for subsequent display on the CRT. This mode
will allow him to view, for example, the contents of the
accumulator and the program counter—in any format
he has chosen—at every other push of the ‘go’ button.

Given the above design it should be helpful to briefly
consider a couple of the Dinkiac¢’s unique operational
and programming aspects. First and most obvious is
the procedure imposed by keyboard limited input.
Since all programs must be typed-in, it is probable
that the typical user will be concerned only with con-
versational routines such as JOSS, FOCAL, or conversa-
tional BASIC. These processors should be structured
in such a way that an anticipated routine will be
scheduled into a delay line and ready for use. For
example, an interactive algebraic processor could be
segmented such that routines for matching, scheduling,
and arithmetic operations are seldom or never swapped,

while more complex numerical subroutines are arranged
in a hierarchy of priorities with the most common
(square root, sine,...) at the top and those seldom
used (matrix operations, error exceptions and com-
ments, . . .) at the bottom. While the software designer
must try to segment these programs for the minimum
swapping delay, it should be borne in mind that in
conversational systems an occasional delay of several
seconds is no cause for concern.* Balance between com-
putation and user interaction is the significant factor.

It is hoped that by now the reader—having con-
sidered the design overview together with the cursory
remarks relating the machine with certain time-
sharing concepts—will have acquired sufficient in-
tuition to answer, for himself, the third of our ques-
tions, ‘‘ What good is it?”” or more graciously put *“ What
market does the Dinkiac serve?”’” For our part we will
start with the statement that anyone now using a desk
caleulator can—for the same price and without sacrifice
of calculator speeds or functions—enjoy the additional
benefits of a completely general purpose digital ecom-
puter. Additionally, the machine will provide a single
user with a computing experience not unlike one he
would receive at a time-sharing terminal. That is, for
highly interactive work he can expect extremely fast
replies with respect to his own response time. For com-
pute bound requests, such as compilations or iterative
numeric calculations, he should suffer no greater frus-
tration than that engendered by a small well used
time-sharing system. It is accurate to add that for the
same jobs these periods of delay would compare favor-
ably with a mini time-sharing system.

Because the tape cassette secondary storage will
double as a fast I/O device a library of special purpose
application cassettes can also be marketed. Examples
are: BASIC for the schools; ‘desk calculator’ for small
businesses; and, ‘preparing your federal tax return’
for the ‘home hobbyist.’

SIMULATION

Our concern with a computer simulation is twofold,
aiming first at determining the Dinkiac’s gross architec-
tural configuration, that is, the number and length of
its delay lines, and second, at obtaining some sense of
its overall performance. GPSS/360 (IBM’s General
Purpose System Simulator for the 360 series) was chosen
for this task—both for its ease of use and its ready
availability.®

For a simulation to serve its intended purpose the
assumptions upon which it rests must be both valid
and appropriate. The assumptions underlying this
simulation are of two kinds, the first has to do with

4 Spsing Joint Computer Conference, 1971

hardware component speeds and may be based on the
price quotes of a number of manufacturers, the second
requires a knowledge of program behavior and is far
more tenuous. An early discussion of equipment char-
acteristics will provide a foundation for the subsequent
consideration of these less structured issues.

Magnetostrictive delay lines are offered in- models
with delays of up to 10 milliseconds at the maximum
or 2MHz bit rate. Prices vary only slightly over the
range with the longest lines (in quantity lots) costing
less than 10 dollars more than the shortest. Since
prices are typically constant up to a delay of around
2.5ms, a 4K bit line costs no more than one with half
that capacity. Restricting the choice to sizes which
facilitate binary addressing, these delays and bit rates
imply that lines of up to 16K bits are feasible.

Because the Dinkiac is a single address machine all
non-jump instructions must be taken sequentially,
and if operands are positioned properly those with
fewer than 128 memory fetches will be executed at
delay line speed. (Switching time, even for slow transis-
tor logie, can always be accomplished during the delay
line to register transfers and may therefore be com-
pletely ignored.) A straight line program, then, will be
executed at about the product of the line speed times
the number of instructions. For the Dinkiac we have
described—with its 4K bit line—this would amount to
approximately 500 instructions/second while a 2K
line would double the rate and one with 16K bits would
cut it to a low of 125 instructions/second.

The tape cassette market is less stable than the
market for delay lines and one may find prices ranging
all the way from under thirty dollars to 100 times that
price. The machines.on the low end are intended for
audio use while those at the other are designed for the
reliable high-speed transfer of digital data. Advertised
speeds for the expensive instruments give writing rates
at under 10,000 bits/second with reading rates to
20,000. Experiments indicate that digital (square wave)
recording on cheap audio equipment can be suceessful
at speeds of two to two and one-half thousand bits
per second. Specifications from a number of manu-
facturers marketing inexpensive recorders indicate that
for under 100 dollars one can. conservatively assume
the following characteristics: (1) Read/write speed of
3.75 ips with a recording density of 800 bpi (bit serial
recording) for a transfer rate of 3000 bps; (2) Search
speed (fast forward and rewind) of 75 ips; (3) Start/
stop time of 60 ms; and (4) Inter-record gap of 14
inch.

The properties given above will be used in the simula-
tion, and to reinforce their conservative character,
cassette page transfer times will always include time
for the transfer of a full half inch inter-record gap as

well as the times for both starting and stopping the
tape. This caution also allows for any timing oversight
arising from the recording technique, which we have
assumed will follow teletype signal transmission meth-
ods, i.e., asynchronously, with a start pulse followed
by data followed by completion pulses. To time a 16K
block transfer, then, we will assume that 16,384 data
bits plus a 400 bit equivalent inter-record gap are
transferred at a rate of 3000 bps to which 120 ms,
start and stop time, are added. That is, block transfer
time = (((line size-+400)/3000)+.120) seconds.

Tape search time will be based upon a full tape
capacity of half a million (2'°) information bits. (Later
we will include some results gathered when providing
for 256 blocks of the larger page sizes, i.e., for tapes of
2% and 22 bits.) Tape length, not including inter-
record gaps, is approximately 655 inches—2'° bits at
800 bpi. Total search time will be determined by
adding—to this length—a half inch for each record
and dividing by the 75 inches/second rate, or, total
search time=((655+4(no. of blocks on tape/2)/75)
seconds.

We may now specifically formulate three questions
we wish our simulation to answer: (1) What is the
best page size? (2) How many lines are necessary for
satisfactory performance? and (3) How will the
Dinkiac compare with other machines? Given some
assumption regarding the number of jumps expected
during the execution of a program plus the anticipated
distance of the jumps—i.e., what percentage of jumps
will remain within 10 words of the current address, 20
words, etc.—it is possible to run simulations based
upon the given transfer rates to obtain meaningful
results for the first two of these questions. If, however,
we wish to relate the Dinkiac’s performance to that of
other machines we will need some standard.

Fortunately, such a standard exists in terms of
average instruction time. Given anticipated percent-
ages for each instruction type and applying these per-
centages to the machine’s actual instruction execution
times, we can determine the time required for an
‘average’ instruction. Gibson has provided us with a
set of such percentages by tracing 55 IBM—7090 pro-
grams involving 250 million instructions.® The traced
programs were comprised of 30 FORTRAN source
programs, 5 machine-language programs, 10 assemblies,
and 10 compilations. Gibson’s set of percentages,
called the Gibson mix, has been used in many machine
comparison studies. Because the Dinkiac has no floating
point hardware, approximate averages for subroutine
execution times will be given for the floating point in-
structions. The same will be done for multiplies and
divides. The Gibson mix programs were scientific and
give a conservative average with respect to a similar

‘The DINKIACI 5

mix projected from the data processing field. Figure 2
is a table of Dinkiac instructions, ‘worst’ ecase times,
and the loosely corresponding Gibson percentage.
Execution times are given as delay-line revolutions.

Because subroutines are included, a single Gibson
mix instruction must represent more than one of the
Dinkiac’s. Specifically, 87 percent are one to one, 7.7
percent are ten to one, and 5.3 percent are twenty to
one. There are therefore 2.7 Dinkiac instructions to
each of Gibson’s and the average execution time for
these 2.7 instructions is 8.6 revolutions. At 2.7 words
for a Gibson instruction, each line of the 256 words/
line machine we presented is capable of ‘storing’ 94.8
Gibson instructions. Similarly a 128 word line will con-
tain 47.4 instructions, and so on. We have greatly
simplified the remaining calculations by assuming a
Gibson instruction size of 2.5 words and line lengths
which are integral multiples of that number—forcing
the use of 125 for the 128 word line, 250 for the 256 word
line, ete.

Returning now to the still unspecified assumptions
regarding program behavior, we find the question of
jumps partially resolved by the Gibson mix. The mix
assigns a 16.6 percent likelihood to the ‘Test and
Jump’ instruction. We will assume that the jump is
taken half this number, or 8.3 percent. To this we must
assign some number of jumps to compensate for those
subroutine loops incurred by our superimposition of
the Gibson instructions over the Dinkiac’s. Suppose 100
Gibson (270 Dinkiac) instructions are executed. Of
the 270 Dinkiac instructions, 8 will be for multiply and
divide, 69 for floating add and subtract, and 106 for
floating multiply and divide. Assuming a five instruc-
tion loop for the first two instruction types and a ten
word loop for the last, we will arrive at 26 jump in-
structions or slightly less than 10 percent of the in-
structions executed. We may further assume that
these subroutines will be retained in the zero delay
line and that return jumps will be back to the lines
from which the subroutines are called. The model
reflects this analysis.

The question of how far each jump goes with respect
to the current program address counter is not easily
answered and is closely allied to the question of how
often must a new page be fetched. Until some study is
made—similar to ‘Gibson’s but with just this aim—or,
until studies of time-sharing systems provide further
insight into page swapping behavior, no well-grounded
assumption can be made. We will postulate that of the
jumps taken—not including the 10 percent headed for
delay line zero—50 percent will remain in the line
they are at while the remaining half will go to the lines
following with percentages of 50 percent, 37.5 percent,
and 12.5 percent, respectively. Here the delay line

sequencing is considered circular. This jump distance
assumption is, of course, inconsistent with the varying
line size and favors short lines. We will compensate for
this advantage by making a near worst case assumption
regarding page swapping, namely, that a new page be
fetched once for every straight line pass through the
memory.

We are now in a position to present details of the
model. Each GPSS ‘transaction’ will represent either
ten Gibson instructions or a signal to initiate the opera-
tion of some given line or tape. Each delay line consists
of a holding ‘queue’ for the transactions, a memory
‘facility’ and a ‘storage’ capable of accommodating the
appropriate number of instructions for a specified line
size. To avoid simulating the simultaneous execution
of instructions in more than one line, only sufficient
transactions to queue up for a single line are generated
at any one time. A transaction entering a facility (one
of the delay lines) from a queue ‘seizes’ that facility
precluding its use by any other transaction. An appro-
priate number (25 for 10 Gibson instructions) of in-
structions is ‘entered’ into the line storage and the total
storage entries compared with the line capacity. If the
storage is full, it is reset to zero; the facility is released;
a transaction is removed from the queue; and new
transactions are created for the next memory line. If
the storage is not full, 18.3 percent of the transactions
go to a jump instruction sequence where the clock is
advanced 10‘jump’ times and the transaction is entered
into holding buffers according to the previously dis-
cussed jump distribution. In the 81.7 percent non-jump
cases, the clock is advanced by the time required for
ten line revolutions times a GPSS ‘function’ which
randomly chooses (on the basis of a given bias—in this
case the Gibson percentages) the number of revolutions.
The facility is then released to allow for another entry
from the queue; a transaction is removed from the
queue; and ten transactions (instructions) are
terminated.

Except in the case of the zero line, the completion of
each line triggers a set of transactions for the next in a
round-robin fashion with the last line triggering the
first. Thirty percent of the completions from the zero
line may additionally store a transaction in one of the
holding buffers to simulate the subroutine return jumps.
A counter at the end of the last line starts an end-of-
job sequence which continues the program for only
those lines which have items in their holding buffers.
Completion of the last line also sends a transaction into
the tape queue. Transactions in the tape queue se¢ize a
tape facility and then randomly ‘pre-empt’ one.of the
swappable delay lines. A pre-empted line is held until
‘returned’ and is precluded from seizure or use by any
other transaction. The tape and pre-empted line times

6 Spring Joint Computer Conference, 1971

INSTRUCTION TIME IN GIBSON
REVOLUTIONS PER-
(Worst case for CENTAGE

nonsubroutines)
Load and Store
Add and Subtract 1.5 38.9
Logical
Multiply and Divide 50. .8
(10 word subroutine)
Floating Point Mult. and Div. 100. 5.3
(single precision)
(20 word subroutine)
Floating Add and Sub.
(single precision) 25. 6.9
(10 word subroutine)
Shifts and Register 1. 9.7
Test and Jump .5 16.6
Index 2. 21.8
Search or Compare

Figure 2

are advanced by one block transfer time and also,
when appropriate, by tape search time. Simulations
may be either “non-predictable”—in which case time
to search half of the tape plus or minus any random
interval up to that same amount is always applied—
or, they may be ‘“predictable.” In the predictable or
“75 percent predictable” runs it is assumed that the
tape will have been correctly prepositioned in all but
25 percent of the transfers. At the completion of these
tape advance times.the pre-empted line is returned
and the tape released. A general program flow is given
in Figure 3.

Two results quickly emerged from the simulations,
most apparent is the ruling out of either very short,
or very long lines. The second, while less glaring, verifies
the adequacy of a four line machine. It is tempting to
continue the simulations with a greater number of
storage lines—and when shift register prices fall this
may prove feasible. Meanwhile, price considerations
for this study dictate that the number be kept as small
as possible. Upper and lower performance bounds were
found by running the simulation with either no, or
with complete, tape buffering.

The number of instructions executed during any one
simulation varies slightly due to the randomness of
the jumps. All runs, however, simulate the execution
of close to 12,300 instructions. Execution time varies
from a lower bound of two plus minutes (120,391 ms)
to an upper bound of almost 12 minutes (707,961 ms).
A table showing the total execution time in milliseconds
for thirty-one simulations is given in Figure 4. Figures
5 through 8 are graphs of the four general cases: four

lines both predictable and non-predictable and the
same for three lines. The dotted lines in Figures 5 and 6
are the results of allowing the number of tape informa-
tion bits to double once for the 256 word block and
twice for the 512 word block. That is, to maintain the
tape block count at 256. Each graph includes upper
and lower bounds in addition to the simulation’s finding
for the particular case. The graphs argue convincingly
for the 256 word page size, and yield insight into the
nature of the balance between instruction execution
and page transfer times.

DESIGN SPECIFICS AND OPTIONS

Sufficient detail to familiarize the reader with the
Dinkiac’s peculiarities was given in an earlier section.
Here we will add a few design particulars, as an aid to
cost estimation, and present some significant options.

The Dinkiac is designed around a five register bus
in a manner typical of the minis. Signals from decoded
instructions, together with outputs from a sequencer

G‘M“’e
Thital
Trawsachons
[eoren v
ot Seim Liwe
Ne:: e Ves Memory Rali?] Advence
TRAG ALTIONS, k1A Tump? 1% Sl
AMrunce T:n:f&
Disraibote, | | hioa) Yt
to 8uiBevs | f[Fermiacte 0 Buitevs
________.r___:___ Termmate
Py Seame Lise L
eval
New ‘ Ves Hemary ol Advance
TRansastions| ' Tump? LI P
Myence »
(‘1501\ %) D:‘l—:'ec*l
Graimate 10 Buttors
nn:-c"".
55:'"‘ ‘.Q.wc.
Counerste Ves R
oo 'g_t&g'f;r“? . 5.3% Advance
TRemsactoas ’
10 Je
) il
Distath
Herminate (o 'e' h
B fEers
Tevim tnate
Euren Quevd e
—l Mo - Sewee Lwse 3
Cons e {flew el ez [Muance
TRam sacTIONS Complete? el 0 Jump
Yes ?:«ur“") Timas
soe 0, Distetbute
ProcesSs Rrmindle 19 8-:&9
TRAvsackiony _—:;
in ButCers Terwis
T3V
St tion

Figure 3

The DINKIACI 7

CASE 128 Word 256 Word 512 Word

Page Page Page
Lower Bound 120,391 ms 234,921 ms 479,801 ms
4 lines, 2 bits 217,246 245,853 505,688
75 percent predictable
4 lines, 2 bits 440,482 324,034 506,057
non-predictable
4 lines, 256 pages — 278,479 552,542
75 percent predictable
4 lines, 256 pages — 454,316 695,778
non-predictable
4 lines, Upper Bound 285,037 331,847 549,388
75 percent predictable
4 lines, Upper Bound 602,615 472,056 586,818
non-predictable
3 lines, 2! bits 289,290 296,161 498,685
75 percent predictable
3 lines, 29 bits 547,898 402,066 532,240
non-predictable
3 lines, Upper Bound 372,937 364,044 583,955
75 percent predictable
3 lines, Upper Bound 707,961 559,366 681,738
non-predictable

Figure 4

and the storage completion lines, determine register
gating and the consequent bus information. The ma-
chine’s instruction set should prove helpful in conveying
an intuitive notion of its logical complexity, and is
given in Figure 9. Codes in that figure are in hexa-
deecimal unless otherwise shown. ‘A’ designates the ac-
cumulator; ‘CB’ the carry bit; ‘M’ the memory; ‘M BR’
the memory buffer register; ‘P’ the program counter;

700,000 ms
600,000
500,000
100,000
300,000

200,000

100,000

128 256 512 words
page size

Figure 5—Four line—75 percent predictable

700,000 ms 4 A
7
600,000 -
7~
-
500,000
— R

400,000

300,000

200,000

100,000

128 256 512 words
page size

Figure 6—Four line—non-predictable

and, ‘Y’ a memory address. Dinkiac word size and
instruction format allow for the expansion and modifica-
tion of this basic instruction set in many ways. For
example, an index register may be added, or shifts
modified to shift by some specified amount. Multiply
and divide logic, too, could be included, and while
these instructions might violate the spirit of the ma-
chine, they could easily be executed within a single
memory cycle.

As implied in the simulation section, the number of
delay lines can be increased with only a minor modifica-
tion to the memory addressing scheme. In this case, the
storage lines would continue—as they are now—to be
synchronized with a single counter. Such a change
could be expected to improve performance by increasing
the data transfer-program execution overlap, but it
would not alter the sequential instruction time which
you may recall is roughly 500 instructions/second for
the 256 word/line machine. Recall also that the
two MHz bit rate allows for an information exchange
between the memory buffer register and the chosen
delay line in eight microseconds. This speed would
allow the execution of non-memory referencing instruc-
tions from contiguous memory locations to proceed at
the rate of 125,000 per second for a phenomenal increase
of 250 times. A major factor contributing to the
Dinkiac’s easy circuit realization, however, lies in the
difference between memory and switching speeds, and
it is this great disparity that allows us to almost dis-
regard the latter. If we wish the increased speed with-
out altering this principle—which also enables us to
purchase the cheapest logic components—we must
provide both double memory buffer registers and the
logic for their utilization. This type of speed-up must
be carefully priced and reviewed in the light of the
simulation results.

8 Spring Joint Computer Conference, 1971

700,000 =8

600,000

100,000
300,000
200,000

100,000

128 256 512 words

page size

Figure 7—Three line—75 percent predictable

COSTS AND CONCLUSIONS

While the probability is high that any manufacturer
seriously considering marketing such a device is already
in either the small machine, display terminal or some
related business—an instructive way to garner a sense
of cost is to consider a prototype builder with no such
association but who can avail himself of quantity
prices for off-the-shelf items. If we assume a two to
one gate to flip-flop ratio—not unrealistic for the pro-
posed serial operation—meaningful logic costs can be
ascertained by a simple count of single bit storage
registers. Itemizing all registers—not integral with
some other priced item (as, for example, the delay line
input gates, . . .)—we arrive at a count of less than 200.
This count is conservative, allowing bits for miscellane-
ous control and making no attempt to share or minimize
the number or size of the registers.

A notion of dollar value can be ascribed to the count

700,000 ms
600,000

500,000

\

110,000

200,000

100,000

128 256 512 words
page size

Figure 8—Three line—non-predictable

by using quantity prices for standard off-the-shelf TTL
gates from leading suppliers. Such an assignment comes
to $2.20 per bit where the flip-flop price is $1.60 and the
gate cost $.30. This approach is again conservative
taking into account no non-standard gates and using
no very slow, but adequate, logic. Computed in this
way the logic price to a backyard builder with connec-
tions is $440.

Similarly pricing the other components puts the

-delay line memory (four, 4096 bit lines) at $400 (in

large quantity); the cassette recorder at $100; the key-
board at $75; the CRT and related components at
$175(the display generator including read-only mem-
ory is available in lots of over 25 for less than $100);
a power supply at $120; and a erystal clock at $100.
The total, then, including logic is $1410. It is reason-
able to expect that quantity costs to a manufacturer—
including labor—would be a good deal less than this
amount. We may note in this respect that currently

DINKIAC INSTRUCTIONS
Memory Reference

STO Y 1xxx A—My
ADD Y 2xxx A+My—A
SUB Y 3xxx A—My—A
JMP Y 4xxx Y—P
JAM Y 5xxx Y—-P,if A<O
JAZ Y 6xxx Y-P,if A=0
JSP Y Txxx P+1-My, Y+1-P
LDA Y 8xxx My—A
AND Y 9xxx A/A\My—A
ISP Y Axxx My+1->My, if My =0 then P+1—P
JCB Y Cxxx Y-P,if CB=1
Non-Memory Reference
NOP 0000 No Operation
HLT 0001 Halt
SNI 0002 P+1-P, if Interrupt Flag =1
SNK 0003 P+41-P, if Keyboard Flag <1
CLA 002- 0—A
CMA 003- 2C(A)—A
CLC 004- 0—CB
CMC 005- 2¢(CB)—CB
LAK 006- Keyboard Buffer—Ag_ss
LAB 007- MBR—A
SHR 008- Shift CB and A right 1
SHL 009- Shift CB and A left 1
RTR 00A- Rotate CB and A right 1
RTL 00C- Rotate CB and A left 1
RLR 001- Rotate A, 8
SCO Y 04xx If Cassette not Busy, P+1—P and Search

Cassette 0 for tape page xx.

RCO 0(10xx)s—— If Cassette not Busy, P+1—P and Read
tape 0 into memory page xx (where xx=1,
2, or 3).

WCO 0(11xx)s—— If Cassette not Busy, P+1—P and Write
tape 0 from memory page xx (where xx=1,
2, or 3).

Figure 9

The DINKIACI 9

advertised prices for display terminals are as low as
$1500, and include all Dinkiac components excepting
three delay lines (the displays have one), a cassette
recorder, and computer logic. This price, incidentally,
includes beautiful packaging. Suppose we add to the
$1500 the excluded items, priced as above, for a grand
total of $2340. There is nothing to indicate that a
Dinkiac cannot be profitably marketed for under
$3000.

This report has attempted to show that a general
purpose digital computer—suitable for a large class of
users, including those in small businesses and engineer-
ing firms, schools, and even private homes—can be
built to market for a price near the low end of the desk
calculator range. A GPSS simulation has shown the
optimum memory length to be the one in which time
for the execution of a page of instructions is closely
matched with tape block transfer time, and has con-
firmed the adequacy of four lines, even while assuming
highly unfavorable operating parameters. Additionally,
by modeling with “Gibson instructions,” we were able

to acknowledge that the Dinkiac—while short on
“bandwidth” in comparison with large machines—is
certainly adequate for its intended purpose.

REFERENCES

1 D J THEIS L C HOBBS
Mini-computers for real time applications
DATAMATION No 39 March 1969

2 J W COHEN
Mini-computers
MODERN DATA No 55 August 1969

3 J H EVELETH
A survey of ultrasonic delay lines operating below 100 Mc/s
IEEE Proc Vol 53 No 10 October 1965

4 R B MILLER
Response lime in man-computer conversalional transactions
AFIPS Conf Proc Vol 33 p 267 1968

5 G GORDON
A general purpose systems simulation program
.EJCC Proc p 87 1961

6 J J CLANCY
Notes on the ‘bandwidth’ of digital simulation
SIMULATION Vol 8 No 1 January 1967

