
Laboratory

Exercises

KENBAK-l

Computer

KENBAK CORPORATION

P.o. BOX 49324

LOS ANGELES, CA. 90049

C KENBAK CORPORATION 1971
ALL RIGHTS RESERVED

Preface

These Laboratory Exercises I in a workbook format I are intended

for independent work. Ideas and concepts are introduced in small

increments and are interspersed with actual experience on the computer.

Emphasis is placed on the principles of self-discovery I immediate feedback,

a nd rewards.

Other books or material might be used as companion volumes for

a more formal and theoretical presentation. However, the Exercises are

independent and may be used as the only reference material.

Questions and comments are welcome.

Kenbak Corporation
P. O. Box 49324
Los Angeles I California 90049
U. S. A.

EX - i

Rev A

Exercise 1

Every computer has a memory in which numbers are stored.. Some

of the numbers are instructions which tell the computer what to do.. Other

numbers are data which the computer operates on to obtain the answers to

problems.. Before long we will expect you to be telling the computer

what to do ..

The memory in our computer is divided into 256 memory locations.

At this time we can understand these best as 256 boxes or drawers I see

Figure 1. 1 0 Each box is one memory location and contains one number.

A number may be changed in any location by using the pushbuttons on the

front panel of the computer s When a number is stored or placed in a

memory location, the number which was there before is destroyed or lost e

Or a number in any location may be examined and displayed in the lights

on the front panel of the computer 0 Examining or reading a number in a

memory location does not change it or remove it.

Every memory location has an address which is the name of the

location e This address is a number itself. If we wish to read or store a

number in a memory location I we must first say what the address is.

Because the word Unumber" can mean two different things to us I we

are likely to get confused. You may not know whether we mean an address

of a memory location or whetherw"e mean the contents of the memory

location 0 Let I s agree that when we say:

Number: We mean a number in general. It could be
an address I or the contents of a memory
location I or something else.

Address: We mean a number which is used as the
name of a memory location.

Data: We mean a number which is stored or is
going to be stored in a memory location.

All addresses are numbers. All data are numbers. Not all numbers are

addresses or data.

EX 1-1

00001010

101011011
11111111

00001110

00001001

00001101
00001100
00001 011

00001000

00000110
00000111

00000101

00000011
00000100

Each box or memory location contains
one number. We can see the number
in this box because it happens to be
on top. The other memory locations
contain numbers too. The numbers
may be changed.

I

---¢
I

~ 00000001
/~---............

00000010

"--- 11001001
00000000

The number on the outside
of the box is the address
of the memory location.
It never changes.

This box represents one
memory location. There
are 256 memory locations
in the computer.

The dashed lines indicate
boxes which we did not
draw.

Figure 1. 1 The Memory In The Computer May Be Thought Of
As A Group Of Boxes

EX 1-2

Our addresses and data are made of eight digits where each digit is

a 0 or a 1. This kind of number is called IIbinary" because there are only

two choices in each position, 0 or 1. In our more familiar decimal numbers

there are ten possibilities in each position. For the computer, binary

numbers are best. For us J binary numbers seem strange. We wi 11 see

that they are very easy to learn though.

We will let a 0 in a binary number mean that no button is to be pushed.

We will let a 1 mean that a button is to be pushed. We will read a light

that is off as a O. A light that is on will be a 1.

o = Button Not Pushed = D or Light Off = 0

1 = Button Pushed =. or Light On = •

That1s easy enough, isn1t it?

Let I S use what we have learned with the computer. Figure 1.2 shows

the location of the lights and switches on the front panel. We won It tell

you about all of the switches and lights now.

If power is off when you begin, turn the Power switch to the On

position. Push the Start button and then push the Stop button. If power

is already on I push Stop. Then you are readYe

The small toggle switch between the Address and the Memory lights

should be placed in the UNL position. When this switch is in the LOCK

position, data cannot be entered from the front panel. In the UNL (for

Unlock) position, entry from the control panel is possible.

EX 1-3

8 OUTPUT
LIGHTS

POWER
~_STOP

______ START

STORE IMEMORY...-. READ

SET I
DISPLAY ADDRESSw...- _

____________-.CLEAR

4 ~ ~4 ~
I I I' I
I I I I I
I I I I I
10101101

AN EXAMPLE

.0 .0••0.. 0 0 0 ~

DDDDDDDD D DO 0 ODD
I I I I I
I I I I I

8 INPUT
PUSHBUTTONS

Figure 1.2 The Front Panel of the Computer

Let ISSee how we ca n enter data into a memory location. We must

do two things. First I we must tell the computer the address of the memory

location to be used. Second I we must tell the computer what our data to

be stored is. Let1s suppose we want to store the data 00111000 into the

location whose address is 10 10 110 1 0 First push Clear I then use the eight

input pushbuttons to enter the address. The picture shows this number

being entered. As each 1 is entered, the output light above it will turn on.

If you make a mistake, use Clear to erase all of the lis and try again•.

When the output lights show that you have entered the number correctly I

you can go on. To tell the computer that this is an address I push the

Set Address pushbutton.

Now we can enter the data to be stored. To do this I push Clear.

This erases the number which was our address. (When we pushed the

Set Address button, the computer made a copy of this number in another

place.) Now enter the data I pushing the input buttons which correspond

to lis. In our example, (data = 00111000) I these are the 3rd, 4th, and 5th

positions from the left. When these are correctly entered, we can store

the data. To do that, push Store Memory.

EX 1-4

How do we know it was done right? Did the computer really do what

we had told it to do? Letls read what is in location 10101101.

To read the data in a location, the address of the location is entered

first It Push Clear and then the input buttons which correspond to the 11 s

in the address. When the number is correctly entered, use the Set Address

pushbutton to tell the computer that this is an address. After doing this I

push Read Memory. The data in the memory location whose addres s you

just entered will be shown in the output lights. In our example this should

be 00111000.

START

READ STORE

ENTER ADDRESS ENTER ADDRESS

SET ADDRESS SET ADDRESS

READ MEMORY ENTER DATA

DATA APPEARS STORE MEMORY
IN LIGHTS

Figure 1.3 Can You Find Your Vvay Around The Boxes?
What Does It Tell You?

EX 1-5

Try entering the following numbers:

In the location whose address is

10000001

01010011

00000000

00001111

11111110

00101100

00001010

00001011

Store the data

11001100

11010001

00001111

10101010

00000000

00000001

00000011

00000100

After you have entered the information, read these same locations and see

if the numbers are there \I T'hey should be. Read them a second time and

see if they are still there. Reading or copying is non-destructive. The

number remains I it is not destroyed.

Try this experiment. Store the data below. Read the data to check

your entry. Turn Power off \I Turn Power on. Push Start. Push Stop. Now

read the contents of these locations and fill in the blanks.

Location

00000000

11110000

00001111

1100 110.0

00110011

11001100

After Power is Off and On

Has the data changed?---------
Do you know why?-----_._-----------

Try this also. Put the data 00000000 into location 11111111. Nov!

read the contents of location 11111111.

What did you read?
--=--=--~-,---------------

This is a special location and we will learn more about it later.

Put the small toggle switch in the LOCK position and try to enter data.

Can you enter data? Can you read data?

EX 1-6

Exercise 2

In Exercise I, we learned how to read and to store one number in

one memory location. We used different addresses, but the memory

locations were not adjacent. They did not follow one after the other.

Usually I we will read or store numbers in locations that follow one after

the other. Their addresses are in a continuous sequence like 2, 3, 4, 5,

etc. The computer contains a feature

which makes it easier to read or store

in locations that follow after each START

other.

Whenever the Read or Store

pushbutton is depressed, the address

counts by one inside the computer.

The address is a binary number.

We haven't discussed how binary

numbers count though we will shortly.

For the time being we don It need to

know what a consecutive sequence

of binary numbers looks like.

To read the contents of a num­

ber of locations whose address are

consecutive (like 17,18,19,20,21),

the address of the smallest one is

entered (including Set Address) .

Depressing the Read pushbutton once

causes the data in that location to

be displayed. Pushing the Read

pushbutton again causes the data in

the next location to be displayed.

We can repeat this for as many times

as there are locations to be read,

Figure 2.1

ENTER ADDRESS

DATA APPEARS
IN LIGHTS

Figure 2. 1 Reading

EX 2-1

ENTER DATA

To store numbers in consecutive

locations I again the address of the

smallest one is entered. Then the

data to be stored in the first location

is entered with the input buttons and

the Store pushbutton is used once.

The address is automatically advanced

to the next location by the computer.

The data to be stored in this second

location is entered in the input

buttons (after clearing) and Store is

depressed again. The process is

repeated until all of the data has

.been stored, Figure 2.2.

Let IS try it 011 the computer,

but first let I s review whether you

remembered how to store data in one

location and to read it back. Into

location 01000 III put the data

10111000. Read the contents of

location 01000 Ill. Does it contain

10111000, the data which you had

put there? If you were unsuccessful

or didn It remember how I you should

go back and review Exercise 1 before

continuing.

START

ENT·ER ADDRESS

STORE MEMORY

Figure 2.2 Storing

Have you noticed that it is hard to keep track of your place when

}TOll are reading our binary numbers? It is easier to read the numbers if the

eight aIsand 11 s are placed in groups. Instead of

the grouping

11100100

11 100 100

is easier to read. You III make fewer mistakes if you do it this way.

EX 2-2

Starting with location 00 000 oII, store the following data:

In Location Store

00 000 all 00 000 100

the next location 00 000 all

the next after that 00 000 001

and the next 00 011 100

and so on 10 000 000

11 100 100

Stop after this one 00 000 100

Check yourself by reading the contents of the seven locations which start

with location 00 000 011. Do they agree with the data above? If they

do not agree, try again. Try to find out why you went wrong.

When you are able to store the numbers above and to read them

correctly I and while the data is in the computer, then try this experiment.

Push Start and release it.

What happens to the display lights ? _

Do you think there is a pattern?

Push Stop. What happens?

After you have stopped the computer I try this experiment. Set the

address to 11 000 000. Enter the number 11 III III in the input buttons

and push Store five times. Then push Clear which will make the entry

number 00 000 000. Push Store five more times. Now set the address to

11 000 000 (the same as before) and read the contents of the ten locations

that start with this address.

Did you find that 11 III III was stored in the first five

locations and that 00 000 000 was stored in the next five locations?

If you are storing the same data into consecutive addres s es I

must you re-enter the number with the input buttons after the first

entry?-----

EX 2-3

Exercise 3

In the first two exercises we learned how to store numbers in the

memory and how to read them. The numbers \l\Tere binary I not our familiar

decimal. Binary numbers use only the digits 0 and 1. A binary digit has

been given the special name I "bit n. A bit may be a 0 or 1 but it is never

a 2 I 3 I 4 I 5 I 6 I 7 I 8 I or 9 .

In Exercise 2 I you were asked to store a series of numbers and I

after checking the entry by reading these same numbers I you were asked

to push Start. The output lights should have started blinking. The numbers

you stored in the memory were instructions or commands to the computer to

do some simple operations. This set of instructions was a program. The

computer was using this program over and over. As soon as it finished

doing the operations once I the computer went back to the beginning of the

program and did the operations again.

In this exercise we will load another program which is very similar

to the program in Exercise 2. In this program the computer halts after it

does the operations once. It will do them once again when you push Start.

As often a s you push Start I it will .do the required operations once and

then halt.

Let1s load the program and see what is does. Starting with location

00 000 all, store the following numbers in the memory:

Location Store

00 000 all 00 000 100

next 00 010 011

next 00 000 000

next 00 all 100

next 10 000 000

next 00 000 000

next 00 000 all

next 00 000 001

next 11 100 100

next 00 000 110

EX 3-1

Read the numbers you entered. Every bit must be right. If there are any

errors I correct them by entering all of the numbers.

Push Start once. The output lights should all be out. If you did not

get this result I or if the Run light did not go out I you have probably

entered the numbers wrong. Try again I re-enter all of the numbers.

Push Start once. The lights should now be 00 000 00. •

Push Start once again. The lights should now be 00 000 oeo .

Push Start a few more times I observing how the lights change. Can

you tell in advance which lights will turn on and which lights will turn off?

Try to make up rules which tell you how the lights will change. Push Start

and see if the lights do change in the way that your rule says they will.

Try this several times. You may have to change your rules but keep trying

until you can always tell what the next pattern in the lights will be.

If you want to start at the beginning again I put the number 00 000 100

into location 00 000 011.

You have been asked to find a rule about how the lights change. If

you did find a rule which told you what the next pattern in the lights would

be I you have discovered for yourself how to count in binary.

EX 3-2

The rule which tells how the lights cha nge might read:

Find the first light at or from the right hand
end that is Off. This light will change to On.
All of the lights from the right hand end up to
this light I but not including this light I will
change to Off. None of the other lights will
change.

Put the number 00 000 100 into location 00 000 a11. This will

start you at the beginning again. Try using the rule above to predict what

the next pattern in the lights will be as you push Start e

The rule above also tells us how to count in binary. All that we

have to do is to change the words "light ll to II bit II I nOn u to I, "Off ll to O.

Then, given a binary number I the next binary number is determined by

the rule:

Find the first bit at or from the right hand
end that is O. This bit will change to 1.
All of the bits from the right hand end up to
this bit I but not including this bit I will
change to O. None of the other bits will
change.

Let I S apply this to some binary numbers.

,
This number 00 000 III

A.A

counts to 00 001 000

,
This number 00 001 000

A

counts to 00 001 001

t
This number 00 001 001

•
counts to 00 001 010

This is the first 0 bit from the
right end. Change it to 1.

All of these change from 1 to O.

This is the first 0 bit from the
right end. Change it to 1.

There are no bits to change from
1 to O.

This is the first 0 bit from the
right end. Change it to 1.

All (in this case ,one) of these
change from 1 to o.

EX 3-3

Put the number 00 000 100 into location 00 000 a11. Push Start

once. The lights should show you 00 000 000. We have written this

number down already in the Table below. Before you push Start again,

write down what the next number will be. Push Start and check yourself.

Then write down the next number and use Start to check your answer.

Repeat these steps until you have filled in the table.

0 0

0 0

0 0 0

0 1 0

0 0 0

0 0 1

o

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

The correct results are given on the next page. Check your numbers

against these.

EX 3-4

00 000 000 0

00 000 001 1

00 000 010 2

00 000 all 3

00 000 100 4

00 000 101 5

00 000 110 6

00 000 III 7

00 001 000 8

00 001 001 9

00 001 010 10

00 001 011 11

00 001 100 12

00 001 101 13

00 001 110 14

00 001 III 15

00 010 000 16

00 010 001 17

00 010 010 18

00 010 all 19

00 010 100 20

00 010 101 21

00 010 110 22

00 010 III 23

00 011 000 24

00 all 001 25

00 all 010 26

00 all 011 27

00 all 100 28

00 all 101 29

00 all 110 30

00 all III 31

Table 3. 1 First Few Binary Numbers

EX 3-5

Exercise 4

Using Table 3. 1 from the last Exercise I answer these questions ..

What decimal number is beside the binary number 00 000 001?

What decimal number is beside the binary number 00 000 010 ?

What decimal number is beside the binary number 00 000 lOa?

What decimal number is beside the binary number 00 001 OOO?

What decimal number is beside the binary number 00 010 OOO?

Write the sequence of decimal numbers which are the answers
to these five questions (start with 1) •

What do you think the next decimal number would be?------
What binary number is the same as this number?----------
What do all of these binary numbers have in common?------

The decimal sequence is I, 2 I 4, 8 I 16 and the next number in this

sequence is 32 e This is the binary number 00 100 000. All of these binary

numbers have one and only one bit that is a 1.

Now look in the Table at the binary number beside 3. Can you see

that it has two bits which are lis? Can you find the two binary numbers

that have single lis in these positions? Here they are:

00 000 001 1
00 000 010 2
00 000 011 3

What is the relationship between the number 3 and the other two
decimal numbers?

+ =

Let I S try another binary number. Take the binary number opposite 6.

Which bits are 11 s in it? Find the binary numbers that have single 11 s in

the same positions as these bits.

What are the decimal numbers? and----- -----
How are these numbers related to 6?--------------

EX 4-1

Do the same with the binary number 00 001 101. Find the three

binary numbers with single ones in these positions.

What decimal numbers are opposite these? _

What is the sum of these three numbers?-----------
What decimal number is beside 00 001 101?--------

Use this same process and find what decimal numbers are equal to the

binary numbers:
1001

III

1011

We know in a decimal number such as 2, 736 that this does not mean

2 + 7 + 3 + 6. We understand that the 2 is to be multiplied by a 1000 I

the 7 by 100, the 3 by 10 and the 6 by 1. We call I, 10, 100, and 1,000

lfplace values rr •

Binary numbers have place values also. They are the sequence

1,2,4,8,16,32,64,128,256, and so on.

A binary number may be converted to decimal by adding up the place

values where the binary number has I l s Cl Let1s do it for a few binary numbers.

Place Values

Binary Number
Binary Number
Binary Number

~ 1. .f.. 1
1 0 0 1

111
1 0 1 1

8 + 1 = 9
4+2+1=7
8+2+1=11

Earlier we asked you to convert these same numbers to decimal. Did you

get the answers shown here? In the second bi.nary number above I we

didn It put any bit under the 8 I s place value. If we put a bit there, what

would we put there?

EX 4-2

Below is a small program which is a game you can play against the

clock. What you must do is to give the decimal number for a binary number

which the computer first displays to you. If you are right I the computer

will give you another different binary number. If you are wrong I the

computer will give you the same binary number again.

Load the following program. Notice that the addresses are consecutive

so you wonlt have to keep re-entering addresses. Double check your

entries by reading. If you have a mistake I you don't need to re-enter all

of the numbers. Use the address given and correct the data which is in

error.

Location Data

00 000 000
00 000 001
00 000 010
00 000 011
00 000 100
00 000 101
00 000 110
00 000 III
00 001 000
00 001 001
00 001 010
00 001 011
00 001 100

00 000 000
00 000 000
00 000 000
00 000 110
00 000 000
11 III III
01 000 011
00 101 101
00 010 all
00 III 000
11 010 100
00 000 001
11 011 001

00 001 101
00 001 110
00 001 III
00 010 000
00 010 001
00 010 010
00 010 all
00 010 100
00 010 101
00 010 110
00 010 III
00 all 000
00 011 001

11 010 001
00 all 100
10 000 000
10 011 100
11 III III
00 000 000
11 011 001
00 000 all
10 000 010
00 all 100
00 000 100
11 100 100
00 000 100

Push Start. The computer should display 00 000 eoe in the output

lights.. This is the binary number for 5 0 You should push switch number 5 I

DO .00 DOD. When you do this I the binary number will disappear and

the light above the switch will come on. Now push Start. If the entry is

correct I the computer will display another I different I binary number. If

your entry was wrong I the computer will display the same binary number

again. Again make your entry and push Start.

The largest binary number the computer will show you is seven. The

smallest is o. The first time you see the number 0 given by the computer

you may think something has gone wrong. It hasn It. Try a few numbers to

see how it goes I then get a friend to time you against the clock. How

many correct ones can you do in a minute?

EX 4-3

Exercise 5

At the end of the last exercise we were converting binary numbers to

decimal. In the first part of this exercise we will do the opposite. The

computer will give you a decimal number from a to 7. You are to enter the

binary number which is equal to this decimal number.

The program to use is:

Location Data Location Data

00 000 000 00 000 000 00 010 000 10 all 100
00 000 001 00 000 000 00 010 001 10 000 000
00 000 010 00 000 000 00 010 010 10 all 100
00 000 all 00 000 100 00 010 all 11 III III
00 000 100 01 000 all 00 010 100 00 000 000
00 000 101 00 101 10 1 00 010 101 10 000 000
00 000 110 00 010 all 00 010 110 00 000 000
00 000 III 00 III 000 00 010 III 00 010 100
00 001 000 11 010 100 00 011 000 11 III III
00 001 001 00 000 001 00 all 001 11 all 001
00 001 010 00 all all 00 all 010 00 001 100
00 001 all 00 000 000 00 all all 00 001 all
00 001 100 00 000 all 00 all 100 00 100 100
00 001 101 01 000 010 00 all 10 1 00 000 100
00 001 110 00 all 100 00 all 110 11 100 100
00 001 III 00 010 100 00 all 111 00 000 110

Did you check your entries? Push Start. The computer will display

00 .00 000 • Since light number 5 is on, you should enter the binary

number DO DOD .0. in the switches. Push Start again. If your input

was correct I the computer will display another I different decimal number.

If you were wrong, the computer will display the same decimal number

again. Try a few times to see how it goes and then have a race against

the clock. With practice you can learn to use two and three fingers at the

same time to enter the binary number.

There are other number systems besides binary and decimal. One of

these is called hexadecimal. There are sixteen digits in hexadecimal

numbers. These are the ten digits of decimal numbers and the six letters I

A, B, C, D, E, and F. In hexadecimal, F + F = IE. The hexadecimal

system is closely related to binary, but we won It use the hexadecimal

system.

EX 5-1

Another number system is called octal. The octal system has eight

digits: a I I, 2 I 3 I 4 I 5 I 6 I 7. You have been working with the octal

system already. For numbers from 0 to 7 I the decimal and octal numbers

are the same. The conversion problems we have been doing are true for

both decimal and octal.

We will use the octal system a lot. It is very similar to binary and

it will make our work much easier. Though you may not be aware of it I you

already know how to convert a binary number to an octal number and

vice versa.

To convert a binary number to octal, divide the binary number into

groups of 3 bits starting at the right I for example I

001 101 110 010

Now write down the a to 7 octal digit that is equal to each 3 bit binary

group above. In this case we would have

1 5 6 2

To convert an octal number to binary I do this in reverse

3 740

all III 100 000

We won It learn any arithmetic rules for octal. We can convert them

to binary and do the arithmetic in binary. However I if there are no carries

or borrows I then octal arithmetic is the same as decimal arithmetic. For

example I all of these additions and subtractions are true for both octal and

decimal numbers:

250
+ __5

255

267
_3
264

146
+ ..-ll..

177

357
- 113

244

An octal number such as 250 doesn1t represent the same quantity of

things as the decimal number 250 does. For example,

Octal 10

Decimal 10

is this many things:

is this many things:
••••••••
••••••••••

EX 5-2

There is one arithmetic operation with octal numbers that we use a

lot. That is counting. The easiest way of counting in octal is to count in

decimal, but to omit all of the decimal numbers which have an 8 or 9 .

Complete the counts below. (Note that the counts go down the page.)

5

6

7

10

11

12

13

14 46 75 112 035 207

With so many different kinds of numbers, how can one tell what

number system is being used? For example, if you see III are you to

think of seven (in binary) or seventy-three (in octal) or one hundred eleven

(in decimal)? We may depend upon the context or the setting in which we

see it. As a price in a store I we know it is decimal. In the computer

we are working with, the number is usually octal. Sometimes when we

could be confused we will do one of the following:

binary III or 111 2
or 111two

octal III or 1118 or III · htelg

decimal III or 111 10 or Illten

FOR INTERESTED STUDENTS (OTHERS NOT ALLOWED)

Bi- means two. Binary numbers use two symbols.

Oct- means eight. Octal numbers use eight symbols.

Deci- means ten or tenth. Decimal numbers use ten symbols.

Hex- means six. Hexadecimal (6 + 10) numbers use sixteen symbols.

Can you give some other words that use bi-, oct-, deci-, or

or hex- ?---_._-----

What is odd about October and December?

EX 5-3

How many sides does a triangle have? _

What might you call the number system with three symbols?

Of all the number systems that are possible I why do you think

we use decimal numbers?------------------------
Could there be a number system with only one symbol?----
How many symbols does the tally system (1m JIll)use? _

Does the tally system have place values ? _

In decimal, the place va lue names are one I ten, hundred I thousand I

etc. There are no agreed upon names for the place values in binary I octal,

and hexadecimal. We sometimes read the octal number 1,750 as lIoctal

one thousand seven hundred and fifty. tr

What decimal number is this?

Must the binary system use the symbols 0 and 1? _

Could it use the symbols a and b?

Why would you prefer one set of symbols to the other? -

Below we give the addition table for octal numbers. Fill in the empty

squares.

0 1 2 3 4 5 6 7

0 0 1 2 3

1 1 2 3

2 2 3

3 3

4

5 14

6 14 15

7 14 15 16

+

EX 5-4

Exercise 6

In this Exercise, weIll learn how to add two binary numbers. Again,

we III use the computer and a program to help us. The program will add our

input number (entered in the input SWitches) to a number already in the

computer. This number in the computer will be stored in an "accumulator ll
it

OLD CONTENTS OF ACCUMULATOR
+ OUR INPUT NUMBER---NEW CONTENTS OF ACCUMULATOR

The addition takes place when we push Start & When the computer stops I

it will display the new contents of the accumulator in the lights. As soon

as we push Clear or one of the input buttons I the light s will then show

the input number. When we want to clear the accumulator (set it to zero) I

weIll use input switch 7

.0 DOD ODD and Start clears the accumulator

Let I s load the program

and see how it works.
Location Data

Notice that the addresses 00 000 000 000 000 00 000 000
00 000 001 001 000 00 000 000

and data have been given 00 000 010 002 000 00 000 000

in both binary and octal. 00 000 011 003 021 00 010 001
00 000 100 004 000 00 000 000

Try using the octal when 00 000 101 005 272 10 III 010

you enter the data. When 00 000 110 006 377 11 III III
00 000 III 007 344 11 100 100

you read the data to check 00 001 000 010 021 00 010 001

it, you should use the 00 001 001 all 004 00 000 100
00 001 010 012 377 11 III III

binary. After a while we 00 001 all 013 034 00 all 100

will use only octal numbers I
00 001 100 014 200 10 000 000
00 001 101 015 134 01 011 100

but until you are familiar 00 001 110 016 377 11 III III
with the octal system 00 001 III 017 344 11 100 100

00 010 000 020 004 00 000 100
we III also put the binary 00 010 001 021 023 00 010 all

number down. 00 010 010 022 000 00 000 000
00 010 all 023 344 11 100 100
00 010 100 024 013 00 001 all

EX 6-1

Push Clear. Push Start. The lights should be out.

Push switch O. Push Start. Repeat these two several times. Do

you see the binary count process as we add one each time? Push switch 7.

Push Start. The accumulator should now be zero. Add some number to the

accumulator. Then push Clear. Push Start. Did the accumulator change?

Are we adding zero to the accumulator?

What we want to do now is to find rules for adding binary numbers

on paper. The computer will be used to tell whether we are right or wrong.

We ca n try our ideas with it. Don It change the binary numbers to decimal

and add. Do all of the work in binary. Try to do this in an orderly way

and organize your approach. Start with simple cases and little numbers

(like 0 and 1). Test your ideas with the computer. After you have tried

awhile I come back and finish reading the rest of this exercise.

There is more than one way to add. You may have found a way that

is different from the one to be given here. That doesn't make yours wrong.

When we learned to add decimal numbers ,one of the first things we

learned was the addition table. With decimal numbers I it was necessary

to learn 100 combinations. One such combination was 8 + 6 = 14. How

many combinations do you think there would be in binary? With 10 digits

for decimal numbers I there were 10 times 10 cases to be learned. With

only 2 digits for binary numbers I there are only 2 times 2 cases to be

learned. And of these four cases I three of them consist of adding 0 to

another number.

EX 6-2

The four cases are:

o
+-1.

1
+--!L

If you know the answers to these four problems and if you know how to

"carry" I then you know how to add two binary numbers. Zero plus zero is

zero. Zero plus one is one e One plus zero is one. One plus one is two.

The number two is written in binary as 10. So we have:

o
+-1.

1

1
+-1.

10

Adding one to one creates a carry in binary. The carry for binary numbers

is used in the same way as for decimal numbers. It adds one more in the

next column to the left. Let I s take the four cases above and also add

in a carry

1 .. 1 .. 1 ... 1 ...--- carry from

0 0 1 1 the right

+--!L +-1. +--!L +-1.
1 10 10 11 carry to

t t t the left

Notice that the sum I including the carry I is the binary number for the

number of 11 s being added together. For example I

1
1

+-1.
11

Let I S add two binary numbers

III 1

1010101
+ 1 1 1 a 1 1 0

11001011

3 11 s being added

= 3 in binary

carry

first number
second number
answer

Give the sums in the following additions and then check your own

work with the computer.

1 0 a
+1 a 0 a

1 a 0 1
+_I_!L.Q.

1 0 1 0 1
+ 110

110 1
+__L..l..

1 0 0 1
+ III

1 1
+1 0 1 1

EX 6-3

While the program is in the computer I try these experiments.

Put 000 in the accumulator I then keep adding 2. These are the even

numbers. Write the first few even numbers in binary.

Now put the number 00 1 in the accumulator I then keep adding 2. These

are the odd numbers. Write the first few odd numbers in binary.

What do all of the even numbers have in common that the odd

numbers do not have?

Do this addition
1 0 110

+ 1 0 110

How does the sum look compared to the numbers being added?

Adding a number to itself is the same as multiplying by 2. Does

multiplication by 2 for binary numbers have something in common with

multiplication by 10 for decimal numbers?

What is the number 2 in binary? _

Appendix I may be used to convert octal numbers to decimal or

decimal numbers to octal.

EX 6-4

Exercise 7

We have been using programs in the computer. A program consists

of instructions which tell the computer what to do. An instruction is a

number in the computer. Different numbers tell the computer to do different

things. In our computer some of the instructions require two memory

locations while other kinds of instructions require one memory location.

The pair of numbers T would tell the computer:

r---------- 004
I 013 --------------,
I I

I-------I,~A COpy OF THE NUMBER IN LOCATION 013

TO THE CONTENTS OF LOCATION 000

AND PUT THE ANSWER IN LOCATION 000

If we change the 004 to another number I we would get a different

instruction I perhaps a Subtract. The 004 is the operation code. The

second number in this pair is an address of a memory location. While in

this example it is 013, it could be any address from 000 to 377. With this

instruction we must always use the number in location 000 as one of the

operands and we must use location 000 to receive the answer. We can't

change that. The pair of numbers mu·st be stored in consecutive locations

such as 100 and 10 1. The 004 number I the operation code, must be in the

smaller of the two addresses. The me mory address, such as 013, is in the

larger of the two addresses.

When we put parentheses around an address, for example,

(013)

we read this as rtthe contents of location a13 II •

EX 7-1

When we use the notation

(000) :' (013)

we mean that a copy of the number in location a13 is to be made and this

value becomes the contents of location 000. Notice that this kind of

statement is read from right to left. We will al so use statements like

the following

(000) : (000) + (0 13)

It says, ([Add the contents of location a13 to the contents of location 000

and then put the answer in location 000 II. This statement I of course I

describes our Add instruction above.

Since the Add instruction can use any location in memory for the

number to add to the number in location 000 I we could express the state­

ment as

(000) : (000) + (XXX), XXX = 000, 001,•.• ,377

The statement on the far right merely says XXX can be any of the memory

addresses. Usually we will omit it. It l s just understood that it is so.

The single number 000 is an instruction to the computer telling it

to stop or halt. We call this an instruction "HaItH. Halt is an instruction

in the computer and the program tells the computer to halt. We III use the

name Ii Stop If for the action of telling the computer I from the front panel,

to stop. It does not require any instruction. Both Halt and Stop produce

the same result. When the computer is halted or stopped, it isn It doing

anything. The Run light is out and we can store and read memory locations.

When the Run light is on, the computer is doing the steps of a program in

the computer. We can It read and store data using the front panel then.

EX 7-2

A computer can do only one instruction at a time. After doing one,

it will do another, followed by another, and so on. How does the computer

know where to begin? And how does it know where the next instruction is?

TH·E NUMB·ER IN LOCATION 003 T·ELLS THE COMPUTER

WHICH MEMORY LOCATION HOLDS THE NEXT INSTRUCTION.

After a11 Add instruction, the number in location 003 is increased

by 2 since the Add instruction is contained in two locations in the memory.

After a Halt instruction, the number in location 003 is increased by 1 since

the Halt instruction use·s only one location in the memory. This adjustment

to the value of the number in location 003 is done by the computer auto­

matically. We could express this symbolically I

for ADD,

for HALT I

(003)

(003)

(003) + 2

(003) + 1

WARNING A common mistake that students make is to say that the

number in location 003 is the next instruction. This is not correct. The

number in location 003 is the address of the next instruction. There is a

big difference between these two statements. Be sure you understand the

difference.

Let I S try the Add and the Halt instructions in the computer. Load

the data in the Before column.

Comments

(000) + (164)
(003) + 2
(003) -}- 1003)

(000)
~003)

HALT

ADD

Location Before

000 250

003 100

100 004
101 164
102 000

164 005

Push Start. The Run light should go out. Read the memory locations and

fill in the blanks in the After column above.

EX 7-3

Did the contents of location 000 change?----------
By how much did they change?

What location holds this number?--------------
Did the contents of location 164 change?

Did the contents of location 003 change?---------
What do the contents of location 003 now tell the computer?

Did (100) or (101) or (102) change?

Now here is a problem for you to progranl. Write a four instruction

program to add together the numbers in location 30 I, in 302 I and in 303.

You can choose your own numbers to put in these locations. Pick small

numbers. Welve written out a few of the locations and data for you. Try

your program in the computer. When the computer stops, you III ha ve to

read the contents of location 000 to get your answer.

Location

000

003

100
101
102
103
104
105
106

301
302
303

000

Comments

Start with zero in location 000

Put first instruction here

HALT

First number
Second number
Third number

Try a different set of numbers in 30 I, 302 I and 303. Don1t forget to put

the proper starting values in locations 000 and 003.

EX 7-4

Exercise 8

Weill learn some more instructions in this Exercise.

This pair of numbers .-WOUld tell the computer:

r - - - - - - - - 014
I 237 - - - - - - - - - - - - -.,
I I

A COpy OF THE NUMBER IN LOCATION 237

FROM THE CONTENTS OF LOCATION 000

AND PUT THE ANSWER IN LOCATION 000

We can also give the results produced by this instruction in this way I

(000)

(003)

(000) - (XXX)

(003) + 2 SUBTRACT

Operation code is 014

And this pair of numbers T would tell the computer:

r - - - - - - - -024
I 133 - - - - - - - - - - - - -.
I I

A COpy OF THE NUMBER IN LOCATION 133

INTO LOCATION 000

LOAD is a transfer of data to location 000 from another location. The data

is not changed in any way. Our shorthand notation for Load is I

(000) (XXX)

(003) (003) + 2 LOAD

Operation code is 024

EX 8-1

The pair of numbers -rwould tell the computer:

r------ 034
321 - - - - - - - - - - - -,

I
I
I
I
I
I

A COPY OF THE
NUMBER IN

LOCATION 000
INTO LOCATION 321

STORE is a transfer of data from location 000 to another location. The data

is not changed. You may want to compare this instruction with LOAD.

We can express the Store instruction,

(XXX)

(003)

(000)

(003) + 2 STORE

Operation code is 034

The Add, Subtract l Load, and Store instructions all use memory

location 0000 It1s beginning to look as if location 000 is special. It is.

It is so special that

MEMORY LOCATION 000 IS CALLED THE "A REGISTER"

and THE (000) ARE CALLED "A"

The A Register is important in the Arithmetic unit.

Location 003 is another very special location. In order that its

feelings won1t be hurt, we have given it a name also.

MEMORY LOCATION 003 IS CALLED THE lip REGISTER"

and THE (003) ARE CALLED lip"

The contents of the P Register point to the next instruction in the program.

In our shorthand notation we could s"ay, for addition,

A:A+(XXX) p p + 2

Whether these are any better or any worse than

(000) : (000) + (XXX) , (003)

we leave to your judgement.

(003) + 2

EX 8-2

Let I s write another small program. Add the numbers in location 140

and 141 and from this sum subtract the number in 142. Before doing these

arithmetic operations, A is to be set to 000 by the program. After the

arithmetic operation, store A in location 200. This will cause the answer

to appear in the output lights. Finally, we will halt.

Notice how this last paragraph could be condensed,

1. A : a
2 . A : A + (140)
3 • A : A + (141)
4. A:A-(142)
5. (200) : A
6. HALT

Each of these six statements can be done with one instruction.

Write a program (see below) from the six statements above. Choose

your own data and load them with the program and try it.

Location Data Comments--
003 320 P = 320

- -- ...&- .- - - ---- -
320
321
322
323
324
325
326
327
3,30
331
332
~ ,-. -~ ~--~---- -- .",.~ - ---...
140 First number
141 Second number-
142 Third number
143 000 Zero

After you have written your program you will probably have a 000 in

location 332. This 000 will be used as a Halt instruction. We suggested

also putting 000 in location 143. This 000 was intended for use as data

to clear the A Register. Would one 000 be enough? Yes, we could use

only one. But it is poor practice to needlessly mix the instructions and

data and make one number serve for both purposes. Try to avoid it.

EX 8-3

Exercise 9

First let1s learn one more instruction. The number 200 I as an

instruction, tells the computer to do nothing. Donlt laugh, the Do Nothing

instruction (also called No Operation or NOOP) is very useful.

Symbolically the instruction causes

P : P + 1

Operation Code is 200

NOOP

That is, the contents of the P Register advance by 1 Q This action in itself

can be important to us.

We are going to use a new feature on the computer which we haven1t

used before. From the front panel we are going to make the computer

start I do one instruction I and stop. We already know that the .QLogram

can have the computer stop with a Halt instruction. From the front panel

we can make the computer execute one instruction and stop regardless of

what this instruction is. This is called "Single Instruction ll and when we

tell you to do a single instruction you should do this:

Single Instruction 1. Push and hold Stop

2. Push Start

3 0 Release Start

4. Now release Stop

Try this a few times to learn the pattern of the actions that are required.

The single instruction feature is very helpful when you are studying what

is happening in the middle of a program. You guessed it I that is what

we are going to do.

EX 9-1

Load this program. Do not push Start. Answer the questions below.

If you have trouble answering the questions I read the last two exercises again.

Location Data Comments

003 240 P Register
200 000 Clear output lights

240 200 NOOP
241 024 LOAD A (060)
242 060
243 200 NOOP
244 344 ?????
245 241
246 000 HALT

What is the value of the P Register?

In what location is the first instruction?

What is the name of this instruction?------------
How many locations does the first instruction occupy?

What should the value of P be after this instruction is done?

Do a single instruction (see the first page of this Exercise) •

Read P (the contents of location 003) •-------------
What is the name of the next instruction?----------
How many locations does it require ? _

What should P be after this instruction is done?-------
Do a single instruction. The P Register should be equal to 243. Check it.

Do a single instruction • Now P should be equal to 244. Check it. (If it

isn It I keep doing single instructions until P = 244.)

Do a single instruction.

What values does the P Register have now?-----_._--
Were you expecting something like this?-----------
From where I do you think I this value of P came? (Hint I look in

the data above.)----------------------------
Do you think the P Register can be changed in ways that we

haven It talked about?

EX 9-2

I I

JUMP or I

BRANCH or 0 TO LOCATION~
FOR THE NEXT INSTRUCTION

GO

The number pair -r- tells the computer:

r-------- 344

I ~ ---------,

The normal next sequence for locating the instructions is cha nged by this

instruction. The location XXX can be any memory location where it is

desired to have the computer go for its next instruction. Not only does the

computer go to location~ for its next instruction, but the P Register is

also changed to this value.

We could look at this Jump instruction in this way:

r------
I
I
I

344
XXX ----,

I

THE NUMBER~ IN LOCATION 003
(BUT DO NOT ADD 2 TO P)

When put this way I it emphasizes that P is changed. These two descriptions

are the same though we will use the language of the first description.

In our shorthand we could say:

P XXX

Operation Code is 344 JUMP

When given in this way I the description seems so short that it is hard to

believe that it could be a very useful instruction. It is a very useful

instruction.

Do you see why an instruction of this type could be called Jump or

Branch or Go To? We prefer the name" Jump" •

EX 9-3

Let l s have some more fun with the computer. Load this program.

Location Data Comments

000 000 A

003 150 P

150 004
151 154
152 344
153 150
154 001

Fill out line 1 below by reading the contents of the locations. Have the

computer do a single i-nstruction e Keep repeating this pattern until all the

lines are filled in.

1.

2 8

3.

4.

5.

6.

7.

8.

A=
A= ---_.
A=
A= ---
A=
A=
A= -------
A= ----

p= ------
p= ----
p =
p=

p= ------
p=

p= ---
p= ------

Let I S stop here, it could go on forever. From the val ues for A and P, can

you tell what the program is doing? Write a short statement telling what

the program doe s .

EX 9-4

Here l s another complete program to try. (The program is called

Chase Your Tail.)

Location

003

Data Comments

100 P

100 344
101 100

Do single instructions and look at the P values. Push Start and let the

computer run. Push Stop. What does this program do?

Does it seem very useful ? _

EX 9-5

Exercise 10

In the last exercise we were studying the P Register. The contents

of the P Register are the address of the next instruction. We saw P advance

in a normal next sequence. Also we saw how we could cause the computer

to break the sequence of taking instructions from an increasing series of

addresses. The Jump instruction could be used to make the computer go

to any location for its next instruction.

In this exercise we will continue working with Jump instructions.

Let I s start right off by loading a program.

Location Data Comments

000 000 A Register

003 100 P Register

100 024 LOAD A
101 360
102 044 ???
103 140
104 000 HALT
105 344 JUMP TO 100
106 100

140 000 HALT
141 344 JUMP TO 100
142 100

200 000

360 001

Push Start. The computer should stop. (Run light out) •

Read the contents of location 003.

Push Start again. The computer should stop again.

Read the contents of location 003.-----------
Change the number in location 360 to 000. Push Start again. The computer

should stop.

Read the contents of location 003 .------------
Push Start again.. The computer should stop.

Read the contents of location 003.------------
EX 10-1

You should have different answers for the P Register values. The first two

times they should be the same. T.he last two times they should be the same

but different from the first two times.

Does this have anything to do with the number in 360?---
Change the number in 360 back to 001. Push Start. The computer should

stop_

What are the contents of location 003?

Is the number in 360 an instruction (Hint: See below)?---
If you donlt know the answer to that last question, do single instructions

and look at the values of the P Register until you repeat a number. You

can write your P Register values here:

Did the P Register ever indicate that the number in location

360 was to be used as an instruction?---
The instruction in locations 102 and 103 sometimes causes a Jump

to location 140. Sometimes it doesn It cause a Jump. We see that the

number in location 360 may be involved. By changing this number,

which isnlt an instruction, we can cause the computer to jump or not to

jump. Just prior to the Jump instruction in location 102 and 103 I the

instruction in 100 and 101 load A with the contents of location 360.

Don It you think the important thing may be what the A Register

contains?--------

EX 10-2

This instruction is called

JUMP, IF A EQUAL TO ZERO,
TO XXX

JUMP TO LOCATION XXX
FOR THE NEXT INSTRUCTION

The number pair..-tells the computer:

r------ 044
I ~ ----------.

I

TAKE THE NEXT INSTRUCTION
IN THE NORMAL SEQUENCE

This instruction has two possible outcomes depending on whether the

A Register is equal to zero or not. If the A Register is equal to zero I the

computer will jump to location XXX for the next instruction. Location XXX

can be any location we desire. If the A Register is not equal to zero I no

Jump is made and the following instruction is used as the next instruction.

NO, A I 0

This instruction is called

JUMP, IF A NOT EQUAL TO ZERO I

TO XXX

JUMP TO LOCATION XXX
FOR TH"E NEXT INSTRUCTION

The number pair ---r-tells the computer:

r- -- - - - 043
I XXX ----------,

I

TAKE THE NEXT INSTRUCTION
IN THE NORMAL SEQUENCE

Do you see the difference? Compare the words until you find the difference.

Write an explanation for what this instruction does (see the one above) •

EX 10-3

EX 10-4

Exercise 11 (Double length)

In this Exercise weill analyze a problem and write a program to

solve it.

The Problem

We want the computer to be a combination

lock. Weill use only the 0 to 7 digits and

we III require only a two number sequence to

open it.

6

o

4

2

The lock would be a better lock if the sequence were longer, but we want

to keep it simple and we want to II crack the safe If. It I S fun to crack the

safe.

If the code were 57, then the entry of a 5 followed immediately by

a 7 will open it. (Weill ignore clockwise and counter-clockwise turns) •

The program should allow the codes to be changed easily.

For input, weill use a single button such as DD .DD DDD for 5.

We could use binary numbers but that would be more buttons to push. When

the lock is open let l s have the computer turn on all the output lights. We

need two variables that describe the first and second codes. Let these

two be Xl and X2. Weill store them in the same form as the input.

Flow Charting

Right now we are not going to describe any rules for flow charting.

We wonlt even define a flowchart. Weill just do some things that come

naturally to us. First I we have to start somewhere so let I s put that down.

(START)

I
We must get an input number. For the moment let1s skip the fol-do-rah

about how we get the input number.

G'ET INPUT
NUMBER

EX 11-1

When we have the number we want to know whether this is equal to Xl.

Since this is a question and not a statement of action, letls use a different

enclosure.

Welve drawn two lines leaving the

diamond ,one for NO and one for YES.

In case the answer is NO we should start

over andget another input number. If

the input number is equal to Xl, we

must remember the code is half-broken

and we must now compare the input

against X2.

GET INPUT
NUMBER

GET INPUT
NUMBER

Looking at the NO branch of this X2 test, the second input character

did not equal X2. The code isn It broken. But this input character might be

EX 11-2

equal to Xl so we should test for that.

Why? Consider this:

45 Combination that opens the lock

445 Portion of input sequence

The 4 here passes the Xl testf

This 4 fails the X2 test I ----..

but this second 4 plus this 5 should open the lock.

Looking at the YES branch I

the code is broken and we

should turn the lights on. After

turning the light s on I let I s go

back a nd be ready to play agai n.

GET INPUT
NUMBER

GET INPUT
NUMBER

We see that we should

make provision for turning the

lights off. So we added one

more box to the flow chart to

remind us to do that.

LIGHTS ON

NO

EX 11-3

Input and Output

Let I S take a little time to ta lk about input and output in our computer.

Whatever number we enter with the input switches, including Clear I

appears in location 377. This location is used to assemble or to gather

together the bits of a number which we are entering. This happens when

the computer is running or when the computer is stopped.

When the program is ready for another input I we will have it halt.

The person enters his input and starts the computer again. With the

computer running again I the program can take the contents of location 377

as the input.

Before halting for the input, we will have the program store the number

000 in location 377. This is the same as if the person pushes Clear. We

do this to save a person from having to push Clear. Our input sequence

will be

Store the number aOOin location 377

Halt

When the program starts again

The input number is in location 377

For output, the program will store a number in location 200. When

the computer is in Run, the contents of location 200 control the display

lights. When the computer stops, the contents of location 200 continue to

be displayed until the operator makes another choice for the display.

The Program

Let I s now use the flow chart and the comments we have made about

input and output to write a sequence of instructions for the computer. Let IS

begin with the box on the flow chart that says START. The first thing to do

EX 11-4

is to get an input number. Weill have the program clear location 377 and

halt. Weill put the first instruction that we write in location 100.

Location

100
101
102
103
104

Data Comments

024 Load A with the number 000
376 Location 376 is to hold 000
034 Store A in location 377
377
000 Halt

When the computer starts again, the input will be in lo'cation 377. Before

we use this input weill clear the output in location 200. We see from the

instructions above, that A is 000. So

105
106

034
200

Store A in location 200

To determine whether the input is equal to the Xl code I we can use

these instructions

107
110
III
112

024
377
014
375

Load A with the input
Input is in location 377

Subtract from A the Xl code
Have Xl in location 375

Don It let the word It code II confuse you. It I s just a number.

The Jump instruction which jumps on A not equal to zero will complete

the action required by the first diamond in the flow chart

113
114

043
100

Jump, A"I 0, to 100

Taking the YES path from the first diamond, we have to get another

EX 11-5

input number. We III use the same pattern of three instructions as we

used before

Location

115
116
117
120
121

Data Comments

024 Load A with the number 000
376 We had 000 in location 376
034 Store A in location 377
377
000 Halt

When the program starts again we will determine whether the input is equal

to the X2 code.

122
123
124
125

024
377
014
374

Load A with the input
Input is in location 377

Subtract from A the X2 code
Have X2 in location 374

zero

The NO branch from this second diamond is to be taken if A is not

126
127

043
107

Jump I A I a I to location 10 7

We determined that 107 was the address to use by comparison to the flow

chart.

If A was equal to zero after the last subtraction I the lock has been

opened. To turn the lights on

130
131
132
133

024
373
034
200

Load A with the number 377
Put 377 in location 373

Store A in location 200

Now the program should go back and start over again

134
135

344
100

Jump to location 100

EX 11-6

We have omitted one other location that is important g Do you know which

one? Location 003 which holds P should have the value 100 since the first

instruction that the computer was to execute was in that location.

Let I s put all of the instructions I data and constants together.

We have

Location Data

003 100

100 024
101 376
102 034
10,3 377
104 000
105 034
106 200
107 024
110 377
III 014
112 375
113 043
114 100
115 024
116 376
117 034
120 377
121 000
122 024
123 377
124 014
125 374
126 043
127 107
130 024
131 373
132 034
133 200
134 344
135 100

373 377
374 X2
375 Xl
376 000

Xl and X2are chosen from these codes

For Input Digit Xl and X2 Code

a 00 000 001
1 00 000 010
2 00 000 100
3 00 001 000
4 00 010 000
5 00 100 000
6 01 000 000
7 10 000 000

Determined by the operator

First I try the program with codes of your choosing. See if the program

works. Then see if you can get a friend to load Xl and X2 codes. Can 2'OU

open the lock then?

EX 11-7

Exercise 12

The final program that we developed for the lock program is hard to

II read ll and understand. It is very desirable that we be able to understand

our own programs. When we first write a program, it probably has some

errors in it. Perhaps we used an Add instruction when we should have used

a Load instruction. Or the program jumps to the wrong instruction. Before

we can make changes to a program (and we will do a lot of changing), we

must understand what we have done already. A list of locations "and their

data content is a poor way of expressing our thinking. It is true that this

is exactly what the computer requires. It is the only thing that it understands.

But we need something more than three numbers. While Ifsomething more"

sounds like extra work, it will save us effort and time. Let's see what

this II something morel! is. Here is an example of it.

Symbolic
Address

A
P

ONE
OUTPUT

BEGIN

Can you read this as a program?

Contents of
Location

000
BEGIN
001
000

ADD A ONE

STORE A OUTPUT

JUMP BEGIN

Scanning this quickly, we can see three instructions at the bottom.

But instead of using numerical addresses, they use the words ONE, OUTPill I

and BEGIN. All of these words appear also in the Symbolic Address column.

Opposite ONE we see the contents of the location are 001.

EX 12-1

Thus we begin to form the idea that

Symbolic Address

ONE

Contents

001

ADD A ONE

may in some way mean an example like this

Location

135 001

ADD A (135)

where the 135 could just as well be any other numerical address. Thus the

use of ONE would be similar to the use of x in algebra.

ONE is a symbolic address. It stands for or represents an address

which is not yet known. When we use symbolic addresses it is understood

that we don't use parentheses that normally would be required.

When we use the label ONE with the constant 00 I, it is obvious that

we were thinking about the contents. It is a symbolic address which is

descriptive of the contents of the location.

What does the program do? The first instruction adds one to the

A Register. The second instruction stores A in OUTPUT which will control

the display lights. The third instruction tells the program to start over. The

program cycles continuously adding one to the A Register and putting these

values out to the display lights. The display lights will show the binary

counting process.

Notice that we can write the program, read it and talk about it even

though the instructions and the constant ONE have not been assigned memory

locations. The way the computer was designed determines the locations

for A, P, and OUTPUT, but it is not important at this stage in the development

of the program to remember just what these are. We do have to understand

the functions of the A Register I P Register I and the Output location 0

EX 12-2

When we write programs ,we will first write a symbolic program.

We wonlt even talk about memory locations until we think that we have a

correct program. Only then will we assign locations and specify the com­

plete data content of these loc"ations. This final step is simple and easy

to do. But we will do it last.

How do we translate the symbolic program to numeric codes? Look

at the example below II

Loc Data Symbolic
ContentsAddress

000 A 000
003 P BEGIN
200 OUTPUT 000

BEGIN ADD A ONE

STORE A OUTPUj

JUMP BEGIN

ONE 001

We started by putting A, P, and OUTPUT on the top lines. The locations

assigned to these are known and canlt be changed. So we put them down

and got them out of the way. Belr)w these we put the instructions. We

spaced the instructions so that there would be as many memory locations

as each instruction required. Some will require two and some take only

one location (here all instructions require two locations). After the

instructions we put the contant 001. We could have used a different order.

We could have put the constant before the instructions. Be we couldn It

put the constant ONE between the ADD and STORE instructions Q

Next we complete the assignment of locations. Except for the reserved

locations 000, 00 I, 002 I 003 I and 200 I 20 I, 202 I 203 and 377 I we can

make most any choice for the first instruction. Location 004 is a very good

choice. With this determined I the locations of the rest of our instructions

are also determined. Weill assign ONE beginning at 204. Then if we

EX 12-3

add more instructions to the program I we won It have to move ONE.

Loc Data Symbolic Contents
Address

000 A 000
003 P BEGIN
200 OUTPUT 000
.-...-.. .-~~ - - .- ~-- -"""~- - -- -

004 BEGIN ADD A ONE
005
006 STORE A OUTPU1
007
010 JUMP BEGIN
all
~ _-A.....A ,,~~ ~

204 ONE 001

With the locations now assigned, we can fill in the Data column.

Some of the entries in the Data column donlt depend upon the location

assignment and could have been filled in earlier.

For location 000, its contents are defined to be 000.

For location 003 I we defined (by BEGIN) that it should be the address

of the location which is labeled BEGIN. We see that this is 004.

For location 200 I its contents are defined to be 000.

For location 004, we use the operation code for ADD (004). (This is

just a coincidence that location 004 contains 004.)

For location 005 I the instruction refers to a location named ONE.

The address of ONE is 204.

For location 006, the operation code is 034.

For location 007 , the address assigned to OUTPUT is 200.

For location 010, the operation code is 344.

For location OIl, the address for BEGIN is 004.

For location 204/ it is defined to be 001.

EX 12-4

Hence we have,

Loc Data Symbolic ContentsAddress

000 000 A 000
003 004 P BEGIN
200 000 OUTPUT 000

.-. - - -~ ..-A .-.... ~- -- ~'VfT- - -
004 004 BEGIN ADD A ONE
005 204
006 034 STORE A OUTPUl
007 200
010 344 JUMP BEGIN
all 004
~--l--v~ .- -1\1'-.-- -.~~~. -- -- '--"

204 001 ONE 001

EX 12-5

Here is a symbolic program for you to convert to numbers for the

computer to use.

Loc Data Symbolic ContentsAddress

A (Doesn It Matter)

P START

OUTPUT 000

INPUT (Doesn It Matter)
~~~~

START LOAD A ZERO

STORE A INPUT

HALT

LOAD A INPUT

STORE ANUM

ADD A NUM

STORE A OUTPU1

lUMP START

~~~~...,~~~

ZERO 000

NUM (Doesn It Matter)

After you convert the program I try it in the computer. Push Start.

The computer will halt. Enter some number with the switches. Push Start.

The computer should halt again. The number displayed should be twice

your entry. You can repeat this.

EX 12-6

Exercise 13

Jack had a die (one die I two dice) which he thought might not be

fair. It seemed to him that some numbers came

up more often than they should. We agreed to

use the computer to help Jack test his die. Jack

would roll it and call the number: I, 2 I 3, 4,

5, or 6. We would keep a tally in the computer

for each of these six numbers. For example,

when Jack rolled the number 3 we would increase the count for 3 by one.

When Jack had rolled the die a large number of times I we would compare

the counts for the six numbers.

We III use six locations in the memory to hold the counts ,one for

each of the six possible numbers that Jack might roll. To start I each of

these locations will contain 000. Let I s choose these locations: Location

301 for the tally on number I, 302 for the tally on number 2 I 303 for

number 3 I 304 for number 4, 305 for number 5 I and 306 for number 6.

One very straight forward solution is given in the flowchart below:

GET INPUT (Let INPUT = N)

A: A + 1

A: A + 1

A: A + 1

A: A + 1

A: A + 1

A: A + 1

EX 13-1

The instructions to get the input and to test whether it is equal to

I, 2, 3 I 4, 5, or 6 are simple III And the steps to increase the tally count

for one of the numbers are easy enough. Let1s see what it would take to

increase the tally for 3 by one.

LOAD A (303)

ADD A ONE

STORE A (303)

JUMP START

ONE 001

To increase the tally for 4 by one, the instructions would be:

LOAD A (304)

ADD A ONE

STORE A (304)

JUMP START

There would be a similar set of instructions for each of the six counts.

Is there a way we can write the program so that fewer instructions

are required? There is. We can have the computer change its own

instructions.

Note that our typical tally sequence is

024 LOAD A (30X)
30X ADDR 1
004 ADD A ONE

034 STORE A (30X)
30X ADDR 2

where X is 1, 2 I 3 I 4, 5, or 6 depending on the number that Jack rolled.

EX 13-2

We will have the program change the value of X in the two locations I

ADDR 1 and ADDR 2. Then these three instructions can be used to tally

for all of the numbers. Very broadly I the program will do these things:

CHANGE ADDRESSES

DO TALLY

To do the tally, we will use the instructions in the typical tally

sequence above. To change the addresses I we can use these instructions:

LOAD A K300

ADD A (377)

STORE A ADDR 1

STORE A ADDR 2

K300 300

The first of the instructions loads A with the number 300 (stored in

symbolic location K300). The input number in location 377 is added to

this. The A Register then contains 30 I, 302 I 303 I 304, 305 I or 306.

This number is stored in symbolic locations ADDR 1 and ADDR 2. We

need only one tally sequence.

Our complete program, in symbolic form I is gi ven on the next page.

EX 13-3

ADD A
004

SUB A
014

LOAD A
024

STORE A
034

HALT
000

JUMP
344

Loc Data
Symbolic Contents CommentsAddress

000 A - - -
003 P START

377 INPUT - - -
200 OUTPUT 000

START LOAD A ZERO Get input

STORE A INPUT

HALT

LOAD A K300 Form address

ADD A INPUT

STORE A ADDR 1

STORE A ADDR 2

LOAD A (3QX) Do tally

ADDR 1

ADD A ONE

STORE A (30X)

ADDR 2

STORE A (ZOO) To display tally

JUMP START

ZERO 000

K300 300

ONE 001

301 000 Tally for 1

30Z 000 Tally for Z

303 000 Tally for 3

304 000 Tally for 4

305 000 Tally for 5

306 000 Tally for 6

EX 13-4

We added one instruction to the symbolic program which we didn It

discuss. We stored the new tally count in the output register.

The symbolic program has a very serious flaw. It does work correctly I

but it will accept any number (from 000 to 377) as input. To show a

problem which can arise I suppose you put your first instruction in location

340 It Then suppose you use the number 040 as input. The program will

change the instruction in 340 instead of one of the valid tallies. No

matter where you put the instructions I a similar situation can occur. The

program can destroy itself. Good programs are not sen.sitive (can!t be

damaged) by bad input data.

Here is an interesting experiment. Complete the symbolic program

and load it It Take a II random li page in the telephorle directory. Use only

the la st digit of each telephone number. Use only the I, 2 I 3, 4 I 5 I and

6 digits and skip the numbers ending in a 0 I 7 I 8 I or 9 digit. Use the

computer to tally a couple of hundred digits. Do you think they occur

with equal probability? Here are the results of one such test:

number of 11 s
number of 2 I S

number of 3 I S

number of 4 I S

number of 5 I S

number of 6 IS

Total

27
22
23
20
18

-l1.
123

(decimal)

In this example we should conclude that these digits are not

distributed evenly. The probability that a teleph.one number ends in a 1

is much higher than the probability that it ends in a 6.

EX 13-5

Exercise 14

In the last Exercise we stored our variable data I the talli;es I in a

very orderly way. We took advantage of this to have the program change

the addresses it used. Again and again we will see the advantage of

storing the data in a systematic way. Weill see it again in this Exercise.

Weill also see a new principle.

We want to look at the problem of adding 50 small numbers together.

These might be the number of runs that a baseball team scored in 50 games.

Letls assume we have these 50 numbers in consecutive locations in the

memory starting at location 204 and ending with 265 (both octal) .

We could use a set of instructions like the following to add the

50 numbers together:

Lac Data Symbolic ContentsAddress

LOAD A ZERO

ADD A (204)

ADD A (205)

and so on until
ADD A (265)

How many instructions would be required?--------
How may locations in memory would be required to hold these

instructions? -------------------------,
Letls look at another way. After the computer has done the

second instruction above I do you think it could add 1 to the address in

this instruction?----------------------------

EX 14-1

It could I and the instruction would now be

~_----I~__[+-I_A_D_D_A--a.(__20.....50.&0.>_~

If the computer now did this instruction, it would add in the second of the

fifty numbers. Let I s examine a set of instructions which would do this.

100 024 BEGIN LOAD A ZERO
101 302
102 004 LOOP ADD A (Z04)
103 204 ADDR
104 034 STORE A SAVESUM
105 300
106 024 LOAD A ADDR
107 103
110 004 ADD A ONE
III 301
112 034 STORE A ADDR
113 103
114 024 LOAD A SAVESUl'v1
115 300
116 344 JUMP LOOP
117 102
300 --- SAVESUM ---
301 001 ONE 001
302 000 ZERO 000

Let I S examine these in some detail. Start with the instructi.on in

location 100 and 101. Ansvver the statements below as true or false.

After the 100/101 instruction, A is 000. • • . . . • T F

After the 102/103 instruction, A is the first

of the 50 numbers. • • 0 • • • • • • • • • • • • •

Storing A in SAVESUM saves the number in the A Register.

We want to use the A Register for another purpose now.

• T F

After the 106/107 instruction, A contains 204. . T F

After the 110/111 instruction, A contains 205. T F

After the 112/113 instruction I ADDR contains 205. . T F

EX 14-2

After the 114/115 instruction, A is restored

to its value after the 102/103 instruction. . • • • . . •

The next instruction after the one in 116/117

is the instruction in 102/103. • . . • • . . • . . • •

After doing the instruction in 102/103 I A will

contain the sum of the first and second numbers.

Eventually the computer will stop. •

T

T

T

T

F

F

F

F

These statements are all true except the last one. Unfortunately I

it is false. These program steps ha ve no end. The fifty numbers will be

added together but then the program will continue to add everything else

in the memory to this sum. And it will stay in this cycle forever.

Letls look at how we can stop the program from looping back after it

has added the fifty numbers together. There is an easy answer. If the

number we store in ADDR is 266 (by instruction 112/113) I then we have

added the fifty numbers together I no more I no less. This test can be made

by inserting two new instructions after the ones in 112/113.

SUB A K266

JUMP A=O END

K266 266

where END is the beginning of the instructions to finish the job. They

might be

END LOAD A SAVESUM

STORE A OUTPUl

HALT

which picks up the answer in SAVESUM and puts it in the display lights.

The program then stops.

EX 14-3

If we wanted to re-use the program, we would have to set the

P Register back to BEGIN and we would have to restore the number in ADDR

to 204. We could have the program do these things.

We include these features in the symbolic program on page 14-6.

In this program how many locations are required for instructions,

constants I and variables (but not for the 50 numbers)?---------
Is this a saving I compared to our first method?-----
By the time we completed the program there were 51 numbers to

add together. What one location (other than the location for the 51st

number) must be changed in the program to do this?---------
What should the new value be?

When you try the program in the computer I here are 50 rlumbers to

add together

00000 11111 22222 33333 44444 55555 66666 77777 88888 99999

The correct answer is 225 (= 341 octal). Now change the five 0 I s to

9's. The correct answer is now 270 which is equal to octal 416.

What answer does the computer give you? _

Can you show the octal number 416 at one time in the

lights?

EX 14-4

Below we give a flowchart for our program. The terminology is a

little different. N(i) is the i
th

number. We start by having i equal to 1

and we add the first number. We increase i by 1 and add the second

number. When the value of i is 51, we stop looping.

i : 1

SAVESUM: 0

SAVESUM: SAVESUM + N(i)

NO

OUTPUT: SAVESUM

EX 14-5

ADD A
004

SUB A
014

LOAD A
024

STORE A
034

JUMP A=O
044

JUMP
344

HALT
000

Loc Data Symbolic Contents Comments
Address

A
P BEGIN

OUTPUT
BEGIN LOAD A K204 Initia 1··· conditions

STORE A ADDR

LOAD A ZERO

LOOP ADD A (204) Basic add
ADDR

STORE A SAVESUM Save A

LOAD A ADDR Form next address

ADD A ONE

STORE A ADDR

SUB A K266 Last Address?

JUMP A=O END Yes I if jump

LOAD A SAVESUM Restore A

JUMP LOOP Loop back

END LOAD A. SAVESUM Display Sum

STORE A OUTPUT

HALT
rUMP BEGIN To start over

K204 204
ZERO 000

SAVESUM ---
ONE 001
K266 266

EX 14-6

Exercise 15

Have you been wondering about negative numbers? Perhaps you have

been hoping that a device as real as a computer didn1t use negative

numbers. Sorry about that, but negative numbers are justas real as positive

numbers and the computer can use both kinds.

Let I S do a little exploring with the computer. Load this program.

000 --- A -_
003 004 P START
377 --- INPUT ---
200 000 OUTPUT 000
004 024 START LOAD A ZERO
005 017
006 034 STORE A INPUT
007 377
010 000 HALT
all 014 SUB A INPUT
012 377
013 034 STORE A OUTPUT
014 200
015 344 JUMP ST.t.l.\RT
016 004
017 000 ZERO 000

This program loads A with 000 and then subtracts the number in

the input (location 377) from A. The result is displayed in the lights.

Weill subtract some small positive numbers from zero and see what answers

the computer gives us. To use the program push Start and enter the number

when the computer stops. Then push Start and the lights will show the

result of subtracting this number from zero. Complete the table on the

next page.

EX 15-1

From 00 000 000 subtract and we get

0 00 000 000 00 000 000 a
+1 00 000 001 11 III III -1

+2 00 000 010 -2

+3 00 000 all -3

+4 00 000 100 -4

+5 00 000 10 1 -5

+6 00 000 110 -6

+7 00 000 III -7

~8 00 001 000 -8

rt-9 00 001 001 -9

The numbers in the right hand column are what the computer suggests

for the first few negative numbers. If you have done your work correctly I

you should be able to take + and - entry on the same line and add them

together and get 00 000 000. For example:

+7 00 000 III
-7 11 III 001

1 00 000 000

When we do this I we get a carry out of the left most column. In the

computer there is nowhere to put this bit. It is dropped and only the

eight bits on the right are retained c Therefore, we see that what t11.e

computer generates for the negative numbers meets this test:

x + (-x) = 0

Can we count with these negative numbers? Counting up is adding

one. Here is an example:

-4 11 III 100
+1 00 000 001
-3 11 III 101

That was the correct answer. Here are two for you to do and check

against the table:

-8
+1
-7

11 III 000
00 000 001

-3
+1
-2

11 III 101
00 000 001

EX 15-2

If you can count, you can add. Adding x + y is nothing more than starting

with x and counting up from there y times.

Can we count down with these negative numbers? Counting down

is subtracting one. For example:

-4 11 III 100
- (+1) - 00 a00 00 1

-5 11 III 011

which is equal to minus five. If you can count down, you can subtract.

How can we tell a positive number from a negative number? If we

were to extend the table we started earlier, we would see the positive

numbers have a 0 in the left most bit and the negative numbers have a 1.

Thus the left most bit becomes the sign where

a is +
1 is -

How can you read a negative number? Here are two methods:

Method 1. Subtract it from 00 000 000 and this gives you the positive

magnitude of the number. For example, given 11 101 all

00 000 000
- 11 101 011

00 010 101 = 25

so the original number wa s -25 octal or -21 decimal •

.Method 2. Interchange O·s and 1as in the negative number I read it as a

binary number and then add 1 to the answer. For example I given 11 III 0 II,

read this as 00 000 100 I which is 4, and then add 1. Hence the number

is -5. This is a handy method for very small numbers.

EX 15-3

In this Exercise we have stated that a number whose most significant

bit was a 1 was a negative number. For example I

341 (= 11 100 00 1)

would be -37 octal. In earlier Exercises we have talked about the number

341 as though it were the positive number 341. Which is the correct

answer? Both are. The computer works equally well with both interpre­

tations. It is our choice whether we wish to interpret the bit pattern

11 100 001 as +341 or as -37 (both octal).

If the nature of the problem allows it I we may consider the numbers

as positive whole numbers. Then

our smallest number is 00 000 000 (= a
and our largest number is 11 III III (= +255 decimal)

When we are doing address computations (as we were in the last Exercise) I

this is appropriate because the addresses are always considered to be

positive •

If the nature of the problem requires positive and negative numbers,

then the number representation that we introduced in this Exercise is

appropriate. In this case I

the smallest negative number is
the largest negative number is
zero is
the smallest positive non-zero number is
the largest positive number is

10 000 000 (= -128 decimal)
11 III III (= - 1)
00 000 000 (= 0)
00 000 001 (= + 1)
01 III III (= +127 decimal)

In both of these interpretations I the decimal point is as the far right.

Again, it is our choice where we wish to put the decimal point (or binary

point). We could have it in the middle or at the far left or somewhere

outside the byte. The computer doesn It care. Of course I when you have

the computer add two numbers you must consider the decimal point in

both of these numbers to be in the same place.

EX 15-4

We now pose a problem for you to program a solution. Write a

program to add x and y (both positive numbers) by only adding and

subtracting one. We illustrate the technique with a small example of

adding 2 + 3.

Ad.d 1
2

+1
3

Start with

"'0
3

-1
2

Subtract 1

3
Add 1 +1

4

4
Add 1 +1

5

"This is the answer.

2
;:l Subtract 1

1

1
;:l Subtract 1
o

)J
Stop when you get a 0 here.

Mter you have done this, you can change one instruction and then

the program will do x -y. Try this with values of x and y that would

generate negative numbers. About a dozen instructions are required.

On the next page we give a work form you can use.

EX 15-5

ADD A
004

SUB A
014

LOAD A
024

STORE A
034

HALT
000

JUMP
344

JUMP A=O
044

JUMP Alo
043

Lac Data Symbolic Contents CommentsAddress

EX 15-6

Exercise 16

Suppose that we had the problem of writing a program to find the

larger of two numbers. It can be done with the instructions that we have

learned. You might like to take some time and try this. We give a short

analysis below.

If we have two non-zero numbers, U and V, and we want to

determine which is the larger I we could subtract the number 1 from each

of them. After the subtraction, if the number U has been reduced to 0

but V hasnIt, then V is the larger number. If both are zero after the

subtraction, then they are equal. If neither one is zero, then we could

subtract 11 s again a nd repeat the test. Here are two examples:

1

U V

3 2
.::l. .::l.

2 1

2 1
.::l. .::l

1 0

Subtract again

U is larger

2

U V

2 2
.::l. .::l.

1 1

1 1
.::l. .::l

0 0

Subtract again

Equal

So while we can determine which of two numbers is larger without

any new instructions, we will see that it becomes much easier with some

new Jump instructions that we will learn now.

In addition to jumping on A zero or jumping on A not zero, we

also have

Jump if A is negative

Jump if A is zero or positive

Jump if A is positive (and not equal to zero)

These instructions use the sign convention that we learned in the last

Exercise. A is negative if the most significant bit (the left hand one)

is a 1. A is positive I but possibly zero, if the most significant bit

is a o. A is zero only if all eight bits are zero.

EX 16-1

Let I S use the following program I to study our fi ve conditiona1 Jump

instructions.

Loc Data Symbolic Contents CommentsAddress

000 --- A ---
003 010 P START
377 --- INPUT ---
200 000 OUTPUT 000

004 024 YES LOAD A K200 200 = "yes"
005 027
006 034 NO STORE A OUTPUT
007 200
010 024 START LOAD A ZERO Get input
all 025
012 034 STORE A INPUT
013 377
014 000 HALT
015 024 LOAD A INPUT Input to A
016 377
017 043 JUMP (X) YES Jump instruction
020 004 being tested
021 024 LOAD A ONE 001 = II nO r..

022 026
023 344 JUMP UNC NO
024 006
025 000 ZERO 000
026 001 ONE 001
027 200 K200 200

We will change the code in location 017 to try the different Jump

instructions. The original value is for a Jump If.A Not Zero instruction.

To use the program, push Start and when the computer stops enter a number

in the input. Push Start and the computer will use your input number with

the Jump instruction. If it makes a jump, it will display eo 000 000

and halt. If it does not make the jump I it will display 00 000 ooe and

halt. You can try different input numbers and see whether the computer

makes the jump or not.

EX 16-2

In the table on the next page I fill in the right column by indicating

whether the jump was made or not 0 (Light 7 on the left is "Yes If and light

o on the right is rrNO'f. Just remember, yes and no, left to right.) For

each box in the right column use an example of input data as given in the

center column. The mark If _Ir means that bit doesn1t matter. Choose

anything you wish.

For each different kind of jump (there are 5) I change the code in

location 017. The codes are given in the left column of the table. If you

are not familiar with the notation, we give a definition here:

a=b

alb

a<b

a;ab

a>b

a equals b

a is not equal to b

a is less than b

a is greater than or equal to b

a is greater than b

EX 16-3

Instruction
Input

Was Jump Made?(Data to be tested)

JUMP Ala xxx 00 000 000
043
xxx At least one bit is a 1

JUMP A=O XXX At least one bit is a 1
044
XXX 00 000 000

JUMP A<O XXX 0- --- ---
045
XXX 1- --- ---

JUMP A;;t 0 XXX 1- --- ---
046 00 000 000

XXX O(At least one bit = 1)

JUMP A>O XXX 1- --- ---
047 00 000 000

XXX a(At lea st one bit = 1)

Our three new Jump instructions are bas.ed on the assumption that

the number being tested, in the A register, uses the negative number

convention that we learned in the last Exercise. If we are thinking of the

number as positive only, then we must be careful. For example, if we

had the address 341 in A we would think of it as positive. Our three

new Jump instructions would treat this as a negative number.

Here is a problem for you to program. Given a number U (let this

be your input number), is it larger than 70 but not greater than 100 (all

octal numbers)? Stated another way,

is U equal to 71,72,73,74,75,76,77, or lOa?

Or using the notation we just learned,

is it true that 71 E; U E: 100 ?

EX 16-4

We give a flowchart below and a worksheet on the next page. Try

U equal to 0, 70, 71, 100, 101, and 270.

GET INP UT; Let INP UT = U

YES

YES

YES

EX 16-5

ADD A
004

SUB A
014

LOAD A
024

STORE A
034

JUMP AID
043

JUMP A=O
044

JUMP AcO
045

JUMP A~O

046

JUMP A"O
047

JUMP
344

HALT
000

Loc Data Symbolic Contents CommentsAddress

EX 16-6

Exercise 17

In the last Exercise we learned three new instructions. They did not

allow us to do anything that we couldn't do before, but they made it easier

to do some things. In this ·Exercise we will learn more features about the

computer that make it easier to do some other things. However I the new

features don It allow us to do anything that we couldn It do already.

Be sid e s the A register, the computer also has a B register and

an X register. The B register is location ODland the X register has address

002. These registers are called the programming registers. A programmer

has full control of these registers 0 There are instructions to Load I Store,

Add, and Subtract (from) the A, B and X registers. The five conditional

Jump instructions can also be applied to these registers.

The codes for these new instructions are obtained by changing the

most significant octal digit (of the first byte) from 0 to 1 for the B register

and from 0 to 2 for the X register. We summarize in the table below.

A B X

Address 000 001 002

ADD 004 XXX 104 XXX 204 XXX
SUB 014 XXX 114 XXX 214 XXX
LOAD 024 XXX 124 XXX 224 XXX
STORE 034 XXX 134 XXX 234 XXX

Below are the test conditions for the Jump instructions

~o 043 XXX 143 XXX 243 XXX
=0 044 XXX 144 XXX 244 XXX
<0 045 XXX 145 XXX 245 XXX
~O 046 XXX 146 XXX 246 XXX
>0 047 XXX 147 XXX 247 XXX

As the table shows I the new codes are easily learned. You must only

remember the rule about substituting 1 or 2 for the o.

If we use the instruction ADD X INPUT I we do not change the value

of the A or B registers. Only the X register is involved. Likewise I when

we use a conditional Jump instruction, the test is made on the specified

register only.

EX 17-1

Since the A, B and X registers are memory locations and do have

addresses, they can be used in another way. We can use them as we

would use memory locations to supply or to receive our data. We can add

the contents of the A register to the contents of the B register and put the

answer in the B register. The symbolic form of this instruction would be

ADD B A. Now go back and read the last two paragraphs again except

do not do what this sentence says next time.

Below we gi ve a few symbolic instructions that use A, B or X a s a

symbolic address. Give the octal code for each and an algebraic or

shorthand statement for each one to describe what it does.

ADD A B

STORE X A

LOAD A X

ADD A A

SUB B B

What is the value of the extra registers? In several of the problems

which we have programmed, we would load A with a variable from the

memory I do something with it I then place it back in the memory. Then we

would load A with another variable, do something else with it I and put

it back in the memory. With more programming registers we can keep our

variables in the registers and not have to transfer them back and forth from

the memory. It will save instructions and time.

The problem in Exercise 14 is a good example. Our problem there

was to add up 50 numbers. The program alternates between loading A with

the sum and loading A with the address that was being changed. (You

should review Exercise 14.) Let I s look at a program which keeps the

address in the X register and keeps the sum in the A register. We give it

in symbolic form on the next page.

EX 17-2

The instructions labeled 1 initialize the first values of A and X.

The lnstruction labeled 2 sets ADDR, the first time to 204. Instruction

number 3 increases X by 1. We see if this new address goes beyond the

last number to be added with instruction 4. If it does I the program jumps

out with the instruction in 5 to the END routine. Otherwise I we add back

in/via instruction 6 I the amount we subtracted with instruction 4. With

instruction 7 we add the next number in the list to the sum. Witll 8 we loop

back and repeat these steps. When we loop back, notice that X is increased

by one e

Loc Data Symbolic Contents Comments
Address

START LOAD A ZERO 1

LOAD X K204 1

LOOP STORE X ADDR 2

ADD X ONE 3

SUB X K266 4

JUMP X=O END 5

ADD X K266 6

ADD A (204) 7

ADDR Changes

JUMP LOOP 8

END STORE A OUTPUT

HALT

EX 17-3

There is one obvious simplification though it is a minor one. The

two instructions, 3 and 4, can be replaced by one instruction.

ADD X ONE

SUB X K266

can be replaced by

SUB X K265

where K265, K266, and ONE contain the numbers 265,266, and 001

respectively.

Here is a problem for you to program. In a list of unknown numbers

stored in locations 204 to 265, how many times does the number 252 occur?

It may be as few as 0 or as many as 50 (decimal). Use all three of the

programming registers. It is not difficult and has many similarities to the

problem we discussed in this Exercise. A worksheet for your answer is

on the next page.

EX 17-4

A
0--

B
1--

X
2--

ADD
-04

SUB
-14

LOAD
-24

STORE
-34

JUMP

to
-43

=0
-44

<0
-45

;!O
-46

>0
-47

Lee Data Symbolic Contents Comments
Address

EX 17-5

1000

Exercise 18

External to the computer, in our world, we use decimal numbers

rather than octal or binary numbers. How can we use decimal numbers in

the computer? There is a binary number equal to each decimal digit

0000 a
000 1 1
00 10 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9

A binary number of four bits larger than 100 1 would involve two decimal

digits so we wonlt use 1010, 1011, lIDO, 1101, 1110, or 1111. If we

have a decimal number weill substitute the equivalent binary number for

each digit 0 For example, for 1984 we could write

0001 1001 1000 0100

This requires us to memorize the ten codes but we already know eight of

them from our binary to octal conversions.

For the time being I let IS only talk about the decimal numbers 00 to

99. We can store a number in this range in one byte. The four most

significant bits I the left half of the byte I would be the tens digit and the

four least significant bits I the right half of the byte would be the units

digit. For example I

1000 0 III would be 87 (decimal)

To distinguish between the different number systems we will call this

representation binary coded decimal (BCD). In some ways these numbers

are like decimals and in other ways they are like binary numbers.

r-~---- This group is the binary number 8
6 0- This group is the binary number 7

0111

4\ li..-.. This group has the decimal place va lue 1
L This group has the decimal place value 10

EX 18-1

Here are some binary coded decimals for you to translate to decimal:

0000 0011

0001 0000

0000 1000

0111 0111

0001 0010

1000 0100

0101 0110

0010 0011

0100 0001

0100 1001

Which of the following binary coded decimals are valid numbers?

0000 1100

0001 0000

1010 0000

1001 0111

Translate these decimal numbers to binary coded decimal numbers 0

50

05

23

78

46

37

28

19

The computer does its operations in binary. If it were to add two

binary coded decimal numbers I the answer may not be correct. Let I s look

at such a case.

0010

+ 0100

0110

0011

1000

1011

= 23 in BCD

= 48 in BCD

which does not equal 71 in BCD. The decimal units digit is not even a

valid code.

EX 18-2

There are two general approaches to this problem.

1. We can use BCD for the input and output but the computer

can convert these to and from binary. Internally I the

numbers will be .. straight II binary.

2. We can keep the BCD representation internally and use

special programming techniques. If invalid BCD codes

are generated I the program will correct these codes.

At this time we will eli scus s the co nversion of a two digit BCD number to

binary. This is one-half of the approach described in 1. above.

Let I s look at the place value of each bit in a two digit BCD number:

ABC D EFGH <J (To give names to the bits)

I
, I 1 x 1 = 1

2 x 1 = 2

4x 1 = 4

8 x 1 = 8

1 x 10 = 10

2 x 10 = 20

4 x 10 = 40

8 x 10 = 80

This is the binary part1
This is the decimal part

For the right half byte I the place values are the same as for a binary

number. To be valid though I these four bits cannot represent a number

larger than 9. For the left half byte I the same binary place values apply

but the decimal place value is 10. Hence all of the place values of the

left hand byte are multiplied by ten.

Let I s look at some simpler BCD cases first.

This BCD number

0000 EFGH

is already converted to binary (or octal) because the tens digit is zero.

Therefore

0000 EFGH (in BCD) is equal to 00 OOE FGH (in octal)

We ha ve just regrouped the bits I nothing more.
EX 18-3

Now take this BCD number

0001 EFGH

The 1 in the left ha11d byte has a place value of ten. The number ten as

a binary number is 10 10. Therefore I

000 1 EFGH (in BCD) is equal to 0000 E FGH
+ 1010

(in binary)

what we have done is to take a 1 from the tens position and added ten to

the units position. Let I s look at a couple of examples.

0001 0100

- 0001

+ 1010

0000 1110

= 14 in BCD

Subtract 1 in the 10 I s position

Add 10 in the l ' s position

This is the binary number for 14.

Here's another example

= 19 in BCD0001 1001

- 0001 Subtract 1 in the 10 I s position

+ _- 1......0.......1__0 Add 10 in the 11 s position

000 1 00 11 This is the binary number for 19.

Note that there was a carry from bit position E to D

Let I S make a general rule for any two digit BCD number, 00 to 99.

1) Subtract 1 in the 10 I s position

2) Add 10 10, in a nother memory location, each time

we do 1)

3) Stop when the BCD number is 0000 EFGH

4) Add the number 0000 EFGH from 3) to the number

we were forming in 2) above.

EX 18-4

Weill apply this to an example for the BCD number 32.

0011 0010 = BCD 32 00 000 000
I)

- 0001 + 00 001 010

0010 0010 = BCD 22 00 001 010 = Binary 10

----_-.-_-_---.--._-----~----------------

0010 0010 = BCD 22 00 001 010 = Binary 10
II)

- 0001 + 1 010

0001 0010 = BCD 12 00 010 100 = Binary 20

- - -- - - - - - - - - - - - - - - - -- - - - -- -- - - - - - - - - -

0001 0010 = BCD 12 00 010 100 = Binary 20
III) - 0001 + 1 010

0000 0010 = BCD 2 00 011 110 = Binary 30

0000 0010
IV) _ 000 1-----

1111 0010

1111 0010

+ 0001

0000 0010

= BCD 2

Whoops. We should not have subtracted again.
We can fix it up by adding it back in.

= BCD 2 = Binary 2

Now we take what is left here and add it to our binary number

00

+ 00

00

011 110

000 010

100 000

Binary 30

Binary 2

Binary 32

In step IV above, the Hover-subtractionll was deliberate. Weill use

this method to detect when we have reached 0000 EFGH in the program

weill write shortly. If the answer after subtraction is negative (the most

significant bit is a 1) I then we have subtracted 0001 0000 one time too

many and we should add it back in.

EX 18-5

We need first to look at a special case which may arise. Suppose

we had the BCD number 95 or in general any number in the 90 IS. Look

at the result of subtracting 0001 0000:

1001 0101

- 0001

1000 0101

This answer looks like a negative number and if we used our rules above

we would have the wrong answer. Why does this problem come up? It is

because the Jump A< 0 and the Jump A;tO and the Jump A>O instructions are

based on a signed representation for positive and negative numbers. Our

input of a BCD number is considered to consist of only positive numbers e

It is not difficult to overcome this. Below we give a flowchart to

convert a two digit BCD number I 00 to 99 I to binary.

YES

BCD: BCD - 1000 0000

BIN : BIN + a1 0 10 0a0

BCD: BCD - 000 1 0000

YES

BCD: BCD + 0001 0000

BIN : BIN + BCD

BIN : BIN + aa aa1 a10

EX 18-6

ADD A
004

ADD B
104

SUB A
014

SUB B
114

LOAD A
024

LOAD B
124

JUMP

A<O
045

UNC
344

HALT
000

Loc Data
Symbolic

Contents Comments
Address

START LOAD B ZERO

rUMP A< 0 PIXUP

LOOP SUB A K020

rUMP Pte 0 FINISH

ADD B K012

rUMP UNC LOOE

FIXUP SUB A K200

ADD B K120

rUMP UNC LOOP

FINISH ADD A K020

ADD B A

END HALT

P START

This program starts with a BCD number in A and finishes with the

equivalent binary number in B.

EX 18-7

Exercise 19

Many times we have seen instructions like these

LOAD A ZERO

ADD B K020

Each of these uses three bytes, two for the instruction and oneror the data.

Instead of having the second byte of the instruction as the address of the

data I we can let the second byte be the data. There would be two advantages

in doing this - it saves memory space and running time.

This type of instruction, which does not use addressing but contains

the data itself I is called constant or immediate. Perhaps ffimmediate ff is

the better name because the data is not always constant. It may vary.

We can use the Load I Store, Add, and Subtract instructions in the

immediate mode. In the Store instruction the designated register is stored

into the second half of the instruction. In the Load, Add, or Subtract

instructions the second byte of the instruction is the data or the operand.

Symbolically we write these instructions

ADD A C=OOO

LOAD A C=020

or as

SUB X C=ADDR

STORE A C=

or even as

LOAD A C=TABLE-1

The notation, C= , indicates it is an immediate type of instruction.

If a numerical quantity follows, then this is to be the value of the second

byte of the instruction. If a symbolic address follows, the numeric address

to which the symbolic address is assigned is to be used. Arithmetic

combinations of symbolic addresses and constants are allowable. In the

Store instruction, no value is gi ven for C since the value to be stored is

the value of the register. The notation I C= , is retained to indicate the

type of instruction.

EX 19-1

The codes for the immediate instructions are ea sily derived. The

right hand octal digit of the first byte becomes a 3. So far I we always

have had this digit as a 4.

Let I s look at some examples of immediate instructions in the computer.

Load this

Loc Data Symbolic ContentsAddress

003 004 P
004 023 LOAD A C = 000
005 000
006 003 ADD A C = 001
007 001
010 033 STORE A C =
011 000
012 000 HALT

Weill do single instructions to study this program. The initial value of

P is 004 i) Do a single instruction (see Exercise 9) .

The value of P is now -------------------
The value of A is now --------------------
From what byte in the memory did this last value come?---

Do another single instruction.

The value of P is now -------------------
The value of A is now -----
How did we get this last value?--------------

Do another single instruction.

The value of P is now------------------
The value of A is now --------_.._-------
The number in location 011 is now -----------

Prior to this Exercise we would have used other bytes in the memory

to store 000 I 00 I, and to save the value of the A register.

How many bytes have we saved?-------------

EX 19-2

In the following program what is displayed in the output lights

when the computer halts?----------------------

Loc Data
Symbolic ContentsAddress

HERE LOAD A C=HERE

ADD A C=OO6

STORE A OUTPUT

HALT

At the end of the last Exercise we had a program to convert a BCD

number to binary. That program can use immediate instructions to good

advantage. In the worksheet on the next page, write it using as many

immediate instructions a s you can.

EX 19-3

IMMED
--3

MEMORY
--4

ADD
-0-

SUB
-1-

LOAD
-2-

STORE
-3-

A
0--

B
I--
X
2--

10
-43

=0
-44

<0
-45

~o

--46

>0
-47

Loc Data Symbolic Contents CommentsAddress

EX 19-4

Exercise 20

We have learned two forms for our Load, Store, Add, and Subtract

instructions. To the first type we will give the name II Memoryrr. To the

second type we gave the name IIImmediate ". Letting a box like this

mean memory location, we could represent an immediate

type of instruction in this way.

CODE

Immediate

DATA

We could represent a memory type of instruction in this way.

Memory

CODE

ADDRESS -0 DATAOF DATA

In a memory type of instruction, the second byte of the instruction is the

addres s of the location in the memory which contains the data. It II points II

to the data.

These diagrams suggest other ways that we might specify the location

of the data. One other way, which we can use in the computer I is called

lIindirect ll and is shown below.

CODE

Indirect
INDIRECT
ADDRESS

ADDRESS
OF DATA DATA

The second byte of the instruction contains the address of the

location which contains the address of the data. The address in the

instruction does not point directly to the data. In an indirect way I it does.

Hence this type of data addressing is named II Indirect II •

EX 20-1

To obtain the code for the indirect mode, the right octal digit of the

first byte is changed to a 5. Load, Store, Add I and Subtract can use the

indirect address.

An example of the symbolic notation for this class of instruction is

LOAD A (TABLE)

The parentheses around the symbolic address tell us that the indirect

address mode is being used. The symbolic address TABLE applies to the

location which contai ns the address of the data. Let I s take an example.

Loc Data
Symbolic Contents
Address

100 035 STORE A (TALLY)
101 177
102 000 HALT

177 303 TALLY

301 000 TALLY1
302 000 TALLY2
303 000 TALLY3
304 TALLY4
305 TALLY5
306 TALLY6

The instruction in location 100/101 is a Store indirect. The second

byte of this instruction points to location 177. Location 177 in turn points

to location 303. The contents of the A register will be stored into

location 303.

Why would such a round about method have any value? Like the

other addressing methods I there are times when indirect addressing saves

memory locations or work.

We III now look at the" problem of finding the smallest number in a

list of numbers. If the list of numbers were 2 I 5 I 7 I 3 I 3 I 2 I 6 I 9 I 4 I

then the smallest number is 2. The fact that it occurs twice has no

significance.

EX 20-2

Our numbers will be octal in the range 0 to 177. They will be stored

in a table or a list which starts with the symbolic address TABLE and ends

with the symbolic address LAST. Thus, if we had three entries, we might

have

TABLE 002
003

LAST 001

Of course the table may be much longer than this. Weill write the program,

symbolically at least, without knowing exactly how long the table is or

where it is located in memory. When we do know weill substitute the

actual values for TABLE and LAST.

In our analysis we will show how one person approached it including

several of his omissions and errors. We wish to exphasize that very few

people can write a perfect program from scratch. Our programmer first

wrote a very informal and general flowchart.

Ll>O~ AT THE FI~S'T NUMBet. OJ THe L/ ST,.,
(nus IS iUE" SM~lL~T $0 I=,f R.)

+
CoM Pr\-Rf nte- SM4Ll.~Sf wlTH THE tJE'XT #=

V
S",.LlE"S'T NlJ MBcR ?

• No

K€~P THe t;LD
SIM~L.lf:S r •
~

e N1) c F THE L , ST ?
~ '1e$

ENJ>

]:>0 We ~~vi ~ JJEW

~ YE:S
USE T~f5 ~uM8~

~s T~e ~Mt\U.e-ST

~
1fe-AC~E'() Tt4 t

IJO

EX 20-3

Next our programmer decided he could use two registers to good

advantage. He let

~ CONT",fJ TffE frl>l>~~S> ~r THt? tvuMeEte
,tv THt LIST lEltJt..; F:XAtA\)JE"j)

A \} Sf Fo ({ COM P itA. \~ 0"'5

Starting to write the symbolic program he put down

LOAD
Lo ~.D

A D.o
SuB

:B
A
B

A

C =- T"~lE
(a)
c=- I
(B)

The first of these instructions sets the value of B for the first number

in the list. The A register is loaded indirectly through the address in B.

For example I if this were the case

Lac Data Symbolic ContentsAddress

204 002 TABLE FIRST NUMBER
205 003 SECOND NUMBER
206 001 LAST THIRD NUMBER

then B contains 204 and A will contain 002 after the LOAD A instruction

above. So far this is the smallest number. Next the number in B is

increased by 1 and the next entry in the list is compared to the smallest

number by subtracting the two. Right away our programmer realizes he has

destroyed the copy of the smallest number I so he inserts an instruction

to save it. Also if the result of the subtraction is larger than zero I the

new number from the list is smaller than the previous smallest number.

EX 20-4

LDA))
I1€"Rc~ _l€,.A!

AD]>
SV13
JUfV\P

C~TA!Le

(B) _~ -{ ST~q~ 4 c-
--... --... SMAt.LB FJ ...c= I 1

(l!>)
H-fR~

The programmer has noted that if A is greater than 0 and if the program

jumps to the instruction marked H"ERE I the the new smallest number will

be picked up from the table I stored or saved in SMALLEST, and the process

will continue with a comparison to the next number in the list. On the

other hand, if the subtraction leaves A zero or negative, the new number

is not smaller. So the programmer adds the two instructions below.

LoA]) B c= Tft.BL~

I+E~£ ~ _lE../t~ _ !.:- _ {~)_ --i sr~E A-c:::
TH&Re ItDj) "B C:. I Sl'JltJLftT

5vB A (8)
J/)II\f> A>0 HERe-
LDIH> A SM f\LLE'ST

JUMP THttE"

This provides the main logic of the comparison. What is missing now is

the test to determine if the end of the table has been reached and the ending

routine. The best place for testing whether the end of the list has been

reached seems to be after the addition of one to the B register.

EX 20-5

LOA) B C= Tit 8 1£
fI£~ t <:- _LQJr! _1 _ {~) i S'7ot$' A c &::

T#rRE AJ) j) .B c=- , $}fAUFST
~...--- ---- -.. - -. -.~~

S(J B A (&) ",
J/)MP A>o HERe- "
[DIU> A St'lALL£ST \

JIJMP THe~t ~
END As r-e1'J1rerL --'--

1$()B ~ C--:--LII-S-T+--~

JVP'lf '1=0 eN))

hJ)J> Be:. Llr5Tt I

Now our programmer might observe that the two successive instructions

could be replaced by the one

hPj)

SuB

ItD.D

B
B

B

c= I
c= lltST -/- I

C::: LItS T

We could criticize our programmer on the choice of HERE and THERE

as symbolic addresses. It would be more meaningful if HERE were replaced

by NEWSMALL and THERE by OLDSMALL.

You can complete the program, choose a table location and entries

for it I and test the program. In the end routine I have the smallest number

displayed in the output lights. A worksheet is given on the next page.

EX 20-6

A
0--

B
I--
X

2--

ADD
-0-

SUB
-1-

LOAD
-2-

STORE
-3-

IMMED
--3

MEMORY
--4

INDIRECT
--5

JUMP

to
-43

=0
-44

<0
-45
;to
-46

>0
-47

Loc Data Symbolic Contents CommentsAddress

~

EX 20-7

Exercise 21

The times when one should use the immediate addressing mode are

usually obvious. The memory addressing mode is the standard and usually

it is the one which is used" It takes experience to appreciate the indirect

addressing mode. We will learn two other addressing methods in this

Exercise.

In indexed addressing the contents of the second byte of the

instruction are added to the contents of the X register. The sum is the

address of the data.

CODE

Index
FIRST
PART

X Reg SECOND
PART

DATA

If the second byte of the instruction is a 200 and the contents of the X

register are 004, then the data location is 204. The same result would

have occurred with 004 in the instruction and with 200 in the X register

or with 100 in the instruction and 104 in the X register.

The code for the indexed mode of addressing is obtained by changing

the right hand octal digit of the instruction to a 6. The symbolic form of

an indexed instruction is

ADD B TABLE I X

The index mode is very handy when one is working vv.i. th a list of numbers

or a table. Usually I the component from the instruction itself will be one

of the end points of the table. It will be the first or last address in the

table. The component co ntributed by the X register will be a relative

location within the table. For example I if we have

300
301
302
303

TABLE

LAST

1st entry
2nd entry
3rd entry
4th entry

EX 21-1

then

1. The second byte of the instruction may be 300,

and X varies from 0 to 3, or

2. The second byte of the instruction may be 277,

and X varies from 1 to 4, or

3. The second byte of the instruction may be 303 I

and X varies from -3 to 0, or

4. The second byte of the instruction may be 304,

and X varies from -4 to -1.

And there are more possibilities than these.

Let I S apply the index mode to the simple problem of Exerci se 14

which was the addition of 50 small numbers. We had the 50 numbers in

locations 204 through 265 inclusive.

It could be done this way

LOOP

END
TABLE

LAST

LOAD X C=061 = 49 decimal
LOAD A C=O
ADD A TABLE,X
SUB X C=1
JUMP X ;:, 0 LOOP

FIRST NUMBER

50th NUMBER

Here we add the 50th number first and the first number last. The

reason for doing it this way is that we can test the X register very easily

when it goes from zero to a negative number. It would not be as easy to

test when X went from 49 to 50.

You should compare the number of instructions above with the number

we used in Exercise 14. The new addressing modes have allowed us to save

half of the number of bytes we used then. Again we emphasize that we can

accomplish nothing new or different. It is just an easier way.

EX 21-2

Weill mention the last addressing method which is called indirect­

indexed. It combines the features of the indirect mode, which occurs

first, and the features of the index mode which occurs second. The second

byte of the instruction is the addres s of another byte. The contents of

this second byte are added to the X register and the sum becomes the data

location. Its symbolic form is

STORE A (LIST) IX

This instruction code is obtained by making the right digit a 7. Our

diagram for this mode is

CODE

INDIRECT
ADDRESS

Indirect - ~ ---I

Index

X Reg

FIRST
PART

SECOND
PART

DATA

The following fun type of problem "illustrates several things including

1. Index addressing

2 . Table look up

3. Delay

The problem is easy though it is harder to describe. Basically we will

create the illusion of movement in the output lights from a series of non­

moving displays. Perhaps the best illustration is a sign on which the news

moves across. Some score boards operate this way and the basic principle

is the same as movies or TV. We are limited with our few lights but still

we can have fun.

In a table in the memory I we will store individual frames or "snap

shots". The program will cycle among the bytes in the table. When it

comes to a new byte it will place it in the output lights. Unless we slowed

the computer down it would run too fast. So weill add some delay.

EX 21-3

Let1s suppose the table contains

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000
01000000
00100000
00010000
00001000
00000100
00000010

With the proper choice of delay I the display resulting from this table

will be that of a lighted dot which bounces back and forth I left and right.

Everyone can make up his own table and they will vary in size. All of the

tables can start at the same location I say 300. Each person who makes up

a table must put the address of the first byte after his last entry into the

A register.

The program is quite simple.

Loc Data Symbolic Contents Comments
Address

P START
A "Last tl address

START LOAD X C=O 1

REPEAT LOAD B TABLE.X 2

STORE B OUTPUT 3

LOOP LOAD B C=040 4
DELAY TIME

SUB B C=OOI 5

JUMP B;tO LOOP 6

ADD X C=1 7

SUB X A 8

JUMP X=O REPEAT 9

ADD X A 10

JUMP REPEAT 11
300 TABLE Table starts here

EX 21-4

Let's examine it. Instruction number 1 sets X equal to o.
Instruction 2 loads B from the table. The value of X determines the byte

within the table. The number we have fllooked-upll goes to the output

lights. Instructions 4, 5, and 6 create a delay. The technique is to load

a register (B in this case) with a number and to count it down to zero.

This takes time which creates a delay. Changing the number in symbolic

location DELAY TIME changes the delay. (You may want to experiment with

the delay time) •

The instruction in 7 increases the value of X by one. Next we test

to see if we have reached the last address which we had decided to put in

the A register. If X is equal to zero I we jump back to REPEAT and start

the cycle again. If X is not equal to zero I we add the amount subtracted

out for the test and then jump back to fetch the entry in the table.

A worksheet on the next page can be used to complete the program.

If you try it with your own patterns I remember the best illusion of motion

occurs when the difference between rrframes lf is relatively small.

EX 21-5

A
0--

B
I--
X

2--

ADD
-0-

SUB
-1-

LOAD
-2-

STORE
-3-

IMMED
--3

MEMORY
--4

INDIRECT
--5

INDEX
--6

IND-IND
--7

JUMP

10
-43

=0
-44

<0
-45

~o

-46

>0
-47

Lac Data Symbolic Contents Comments
Address

EX 21-6

Exercise 22

We have completed the addressing modes. In this and the following

Exercises we will learn some ne\v instructions. The three that we will

learn in this Exercise apply only to the A register. They cannot be used

with the B or X registers. They have the five addressing modes and address

codes that we learned.

Many times one byte will contain more than one item of data. We had

an example of this when we had two BCD digits in one byte. How can we

separate the individual items within a byte? For example I suppose we have

a byte with three items of data I A I B I and C.

AA BBB BCC

which we wish to separate into

AA 000 000

and 00 BBB BOO

and 00 000 OCC

One of our new instructions I AND I permits us to do this.

The opposite problem occurs when we want to merge data. We can

combine separate items of data such as A, B I and C above into one byte.

In some cases we can use an Add instruction. We could in the example

just given. In other cases the use of the Add instruction many not work

because of carries between bit positions. Here is a case which would not

work. We have a byte of data I

OX 000 000

in which we want to set the X bit to a 1. However I we don1t know whether

X is now a a or a 1. If we used the Add instruction I we could get two

results.

If X = a
/

00 000 000
+ 01 000 000

01 000 000

If X = 1
/

01 000 000
+ 01 000 000

10 000 000

EX 22-1

We get the result we want in the first case but not in the second case.

While there are ways one could do this I the second of our new instructions I

OR, allows us to do this easily.

In the AND instruction the answer consists of 8 bits (one byte). Each

bit is determined from the two bits in the data and in the A register which

are in the same position. A bit in the answer I which is stored in the A

register I is a 1 if and only if the two corresponding bits in the data and

in the original A register were both 11 s. For example I

AND
00 110 011
01 010 101
00 010 001

Original A
Data
Answer (in A)

In the OR instruction the answer consists of 8 bits also. Again each

bit is determined by the two bits in the same position of the A register and

the data. A bit in the answer I which is stored in the A register I is a 1 if

either or both of the corresponding bits in the data and the A register are 11 s.

For example I with the same two operands as above I

OR
00 110 011
01 010 101
01 110 III

Original A
Data
Answer (in A)

The codes for the AND or OR instructions are

AND

OR

32M

30M

xxx
XXX

where M is the addressing mode and XXX is the second byte of the

instruction.

The AND and OR instructions perform logical operations. We don't

wish to imply that Add and Subtract are illogical operations; we speak of

them as arithmetic operations.

Our third new instruction I LNEG I is an arithmetic operation. It loads

the A register wi th the negative va lue of the data. If the data is already

negative, then A will be loaded with a positive number. The instruction

LNEG A DATA

produces the same result as

LOAD A ZERO

SUB A DATA EX 22-2

The code for LNEG (Load Negative) is

LNEG 33M XXX

where M is the addres sing mode and XXX is the second byte of the instruction.

If one wanted to change all the 0 bits ina byte to lis and all of the

1 bits in a byte to 0 lS, for example 1

01 110 011

to 10 001 100

it could be done this way

LNEG A DATA

ADD A C=377

To show an example I let the DATA content be 01 110 011. Using the

LNEG instruction we would get

this 10001101

and then adding 11 III III

we get 10 001 100

By now you know how to demonstrate the operation of individual

instructions with the computer. It is recommended that you do so for each

of the instructions. When you try the LNEG instruction 1 use the data

10 000 000. You will see that an incorrect result is obtained. The reason

is that the number 10 000 000 represents -128. In the signed representation

of numbers for the computer I there is no +128.

If DATA contains 10 000 000 I and the following operation is performed

LNEG A DATA

what result is obtained in the A register? ----------------

EX 22-3

Here is a problem for you" There are six conditions I U I V, W, X,

Y, and Z. Each condition is true or false as indicated by the least significant

bit in each of six locations. We'll give the locations the same name as

the condition. We'll let a 1 bit indicate the cO.ndition is true and a 0 bit

indicate it is false. For example I if U contains 00 000 000 I then U is

false" If U contains 00 000 00 I, then U is true.

Program a solution to the following question:

Is it true that

or

or

1)

2)

3)

U and V and Ware all true,

X and Yare both true I

Z is not true?

Here are some test conditions to try (we give the correct answer also)

U V W X Y Z Question

Test 1 0 0 0 0 a 0 TRUE by 3) above
2 0 0 0 0 0 1 FALSE
3 1 1 0 1 a 1 FALSE
4 1 1 1 1 a 1 TRUE by 1) above
5 1 1 1 1 1 1 TRUE by 1) and 2) above

A worksheet is given on the next page.

EX 22-4

OR
30-

AND
32-

LNEG
33-

ADD
-0-

SUB
-1-

LOAD
-2-

STORE
-3-

A
0--

B
I--
X

2--

IMMED
--3

MEMORY
--4

INDIRECT
--5

INDEX
--6

IND-IND
--7

Lac Data Symbolic Contents CommentsAddress

EX 22-5

Exercise 23

In the last Exercise we learned of ways to manipulate the individual

bits in a byte. Through use of AND and OR instructions we could set

individual bits to 0 or to 1. In this Exercise we III learn of another way to

control and test individual bits. In some cases the new way is preferable

while in other cases the AND and OR instructions are better.

The new instructions have a different format and code structure.

They still have two bytes and the second byte is an address of a byte in

the memory. Only memory addressing is allowed.

The first instruction, Set 0 I sets a bit in the memory to a O. We may

give the location and the bit position within the byte. The code is

OB2 XXX

B is an octal digit which specifies the bit position. Bit positions are

numbered 7 I 6, 5 I 4, 3, 2, 1, 0 corresponding to the front panel labeling.

XXX is the address of the location to be changed. For example,

072
200

sets the most significant bit of the output location to a O.

A similar instruction, Set I, sets a bit in the memory to a 1. Its

code structure is

IB2 XXX

The instruction

102
200

sets the least significant bit of the output location to a 1.

Since the A, B, and X registers have addresses, these instructions

can be used to set bits in A, B I or X. However, a major advantage of the

Set 0 and Set 1 instructions is that they can be used to control bits outside

of A, B, or X without changing A, B, or X.

The Set a and Set 1 instructions manipulate or change data. Two other

instructions, with some points of similarity, permit individual bits to be

tested.

EX 23-1

The Skip 0 instruction will cause the P register to advance an extra

two locations if the bit specified by the instruction is a O. A bit is specified

in the same way as for a Set 0 or Set 1 instruction. The second byte of the

instruction is a memory address. The bit within this byte of data is

specified by the second octal digit of the first byte of the instruction. The

code for Skip 0 is

2B2 XXX

The code for the Skip 1 instruction is

3B3 XXX

The result produced by these instructions is easier to remember if you read

the name of the name of the instruction as

Skip on the specified bit equal to 0 (or 1)

If the specified bit is not equal to the condition gi ven, then the next

instruction is the instruction following this instruction. In this case the

result is much like a two byte "do nothing" instruction. If the specified

bit is equal to the condition given I then the two byte instruction following

this Skip (or the two one byte instructions) are omitted or not executed.

The P register skips over these two locations.

Let I S demonstrate these operations with the computer. Load this

program:

Loc Data Symbolic ContentsAddress

000 001 A 001
003 004 P 004
200 000 OUTPUT 000
004 202 SKIP 0 bO A
005 000
006 172 SET 1 b7 (200)
007 200
010 000 HALT

First I from a study of the program predict what the output

lights will be after you push Start. ~~~~~__~~~~~~~~~~_

Push Start. Were you correct?-----

EX 23-2

Now change P back to 003. Change A to 000. Do not change OUTPUT.

What do you predict the output lights will be after you push

Start ?-----------------------------
Push Start. Were you correct? _

Set P equal to 003, A to 000, and OUTPUT to 000.

What do you predict the output lights will be after you push

Start ?---
Push Start. Were you correct?

At the end of Exercise 22 we gave you a problem to program using

And, Or I and Lneg instructions. Solve the same problem using only the

Set I Skip, and Jump instructions. There is a worksheet on the next page.

EX 23-3

SET 0
OB2

SET 1
IB2

SKIP 0
2B2

SKIP 1
3B2

JUMP

UNC
344

10
-43

=0
-44

<0
-45

;:0
-46

>0
-47

Loc Data Symbolic Contents CommentsAddress

EX 23-4

Exercise 24

We now come to a group of related instructions for which there may

not seem to be much need. After you have some programming experience,

youlll see more value in them. Basically the instructions move data within

a byte and usually they donlt generate any new bits. And sometimes they

throw bits away. Let I s describe the instructions first and then we III see

how to use them. The four types of instructions are

Shift Left

Rotate Left

Shift Right

Rotate Right

These are one byte instructions. They operate only on the A or B

registers as specified but not on both at the same time. The amount of

shifting or rotating may be specified as I, 2 I 3, or 4 bit positions. Weill

describ-e all of the operations for only one bit position. For three bit

positions, the result is the same as doing it for one bit position three times

in a row.

A Rotate Left 1 instruction moves all bits in the byte one place to the

left. The bit that was at the left end (the most significant bit) is carried

back around to the right end to become the least significant bit. For example,

Bit position

Original bits
Final bits

7-6543210

abc d e f 9 h
bcdefgha

A Rotate Right 1 instruction moves the bits one place to the right.

The bit that was at the right end (the least significant bit) is carried around

to the left end to become the most significant bit. An example is

Bit position

Original bits
Final bits

76543 2 1 0

abc d e f g h
h abc d e f g

The Shifts differ from the Rotates in two ways. No bits are carried

around the end. The most significant bit or the least significant bit is

treated in a special way. In a Shift Left I, these are the results

Bit position

Original bits
Final bits

76543 2 1 0

abcdefgh
bcdefghO EX 24-1

If you were to add a byte of data to itself I you would get

abc d e f 9 h
+ abc d e f 9 h

b c d e f 9 h 0

which is the same result as a Shift Left 1. That the addition does yield

the result claimed may be shown by considering that multiplication by 2 in

binary is the same as multiplication by ten in decimal. All the digits move

one po sition to the left a nd a zero is added at the right. Therefore a Shift

Left 1 is equal to multiplication by 2. This is only true if the answer is

not larger than what can be represented in one byte. If we start with the

number 5

00 000 101

after one Left Shift we have 00 001 010 = 10 decimal

after another Left Shift 00 010 100 = 20 decimal

after a nother Left Shift 00 101 000 = 40 decimal

after a nother Left Shift 01 010 000 = 80 decimal

after another Left Shift 10 100 000 = 160 decimal
or = -96 decimal

If you are using a signed convention for your numbers 8 overflow occurred

on the last shift. If you are using a positive only convention I overflow

would occur on the next shift.

Similar results are produced wi th negative numbers. Let I stake -1

11 III III

After two Shift Left 1 instruction we would have

11 III 100

which is equa 1 to -4 (-1 x 2 x 2 = -4). If we continued this we would

eventually get overflow. The Shift Left 1 instruction is multiplication by 2

if no overflow occurs. When overflow occurs the result is greatly in error.

EX 24-2

The Shift Right instruction is equal to division by 2 with the remainder

being thrown away. The sign is treated in a special way. For example I

Bit position

Original bits
Final bits

Look also at a Shift Right 4

Original bits
Final bits

76543210

abc d e f 9 h
a abc d e f 9

abc d e f 9 h
a a a a abc d

It is done in this way to preserve the sign of the original number. For

example I a Shift Right 2 of -4

11 III 100

yields 11 III III

-4

-1

Give the results of the following ope.rations applied to the data.

Rotate Right 1

Rotate Right 3

Rotate Right 4

10 III 000

01 all 100

10 III 000

a

b-----------

Answers a and b should be the same. Do you see why?

Rotate Left 1

Rotate Left 4

01 011 100

10 III 000 ________ c

Answers band c should be the same. Can you make up a rule here?

Shift Left 1 11 000 110

Shift Left 4 11 000 110 d

Shift Right 4 11 000 110 e

Answers d and e should not be the same.

EX 24-3

For signed representation of positive and negative numbers I does

overflow occur in these cases?

Shift Left 1

Shift Left 2

Shift Left 1

Shift Left 2

00 101 101

00 101 10 1

11 010 010

11 010 010

If you do a Shift Right 4 followed by a Shift Right 4 what are

the pas sible outcomes? _

The codes for these instructions, when applied to the A register are

Right Shift aNI Where N
Right Rotate INI 1 1 place

Left Shift 2Nl 2 2 places
3 3 places

Left Rotate 3Nl a 4 places

For the B register add 4 to the value of N. These instru·ctions ha ve only

one byte.

You should try these instructions in the computer 0 You Can check

your answers above and try other data values also.

The Rotate instructions are useful for moving bits around. Perhaps

you might want to test whether bit 6 in the A register is a a or a 1. You

could do this in several ways ,one of which is to perform a Rotate Left 1

followed by a conditional Jump instruction.

The Shift instructions are arithmetic operations. They are a fast way

to multiply or divide by 2,4,8, or 16.

EX 24-4

Exercise 25

We often have the same sequence of instructions repeated at different

places in a program. The repeated sequence might perform a function

such as conversion of a BCD number to binary or getting an input number.

A flow chart for a situation of this

type might look like Figure 25. 1 CI

At three different places in the program I

we might use the same instructions

LOAD A C = 0

STORE A INP UT

HALT

In this Exercise weill show a

way to make one set of instructions

serve for all three places" The

general idea goes by the name

trsubroutine" .

Subroutines are different from

looping. It is true that a program FIGURE 25. 1

which loops does use the same set of instructions more than once but

these occur at only one place in the program. Subroutines would apply to

the same sequence of instructions vvhich are used at different places in

a program. A program loop may have a subroutine and a subroutine may

have a loop.

Load these instructions in the computer and push Start.

003 004 P
004 200 NO-OP
005 024 LOAD A P
006 003
007 000 HALT

When the computer halts I what does A contain ? _

EX 25-1

The NO-OP instruction may be ignored. The LOAD instruction puts

the value of the P register into the A register. At the moment that the

transfer is actually made, the P register has the value which is the

addres s of the LOAD A P instruction.

Let1s extend the program in the computer and divide it into three

parts

003 004 P
004 200 NO-OP
005 024 LOAD A P
006 003
007 344 JUMP 300
010 300
011 200 NO-OP
012 000 HALT

100 024 LOAD A P
101 003
102 344 JUMP 300
103 300
104 200 NO-OP
105 000 HALT

300 034 STORE A OUTPUT
301 200
302 000 HALT

Part 1

Part 2

Part 3

First I set P equal to 004. Push Start 8

After halting, what does A contain? -----------
Next I set P equal to 100. Push Start.

Now what does A contain? --_._----------
If the program comes to part 3 from part I, A contains 00 5. If the

program comes to part 3 from part 2, A contains 100. Now suppose we

wanted to go back, from part 3, to the part we came from. If we made

EX 25-2

part 3 into the following

300 034 STORE A OUTPUT
301 200
302 000 HALT
303 003 ADD A C=4
304 004
305 034 STORE A IP ADDR
306 310
307 344 JUMP XXX
310 --- JP ADDR

we will return to the part from which we came to part 3.

This illustrates the subroutine concept. Part 3 is the subroutine

(not a very useful one in this case). Part 1 and part 2 are two different

sections of the program which can both use part 3, the subroutine. Load

the complete part 3 I do single instructions and observe the contents of

the registers when you start with values of P equal to 004 and 100.

There are other ways that we achieve the same thing. The common

feature is to create a record (an address) which indicates to the subroutine

what other part of the program is using the subroutine. This record "marks II

where we are to return after the subroutine is completed. In our example

above, this record was maintained in the A register.

A. new instruction, Jump and Mark, makes this process much easier.

The Jump and Mark set of instructions has all of the characteristics of the

Jump instructions which we have learned. It may be conditional based

on one of five conditions for A, B, or X or the Jump and Mark may be

uncon.ditional.

If the Jump is made I with the Jump and Mark instruction, the address

of the Jump and Mark instruction plus two is stored in the location whose

address is in the second byte of the instruction. The next instruction is

taken from the location following this Mark record. Letls look at an

EX 25-3

example to help straighten out the confusion. Load this.

003

100
101

300
301

100

364
300

000

p

rUMP & MARK 3001

HALT

The Jump and Mark above is unconditional.

Push Start.

P has the value , . _

The contents of 300 are ~~__~. ~.~__~__~

The Mark address is stored in location 300. In this case the Mark address

is 102 which is two more than the address of the (first) byte of the Jump

and Mark instruction. When the subroutine (not shown here) is completed I

it would probably "return control" to the instruction in location 102.

The Jump Indirect instruction is an easy way to return control from

the subroutine to the program segment which used the subroutine. The

word Irindirect II has exactly the same meanirlg as it does for indirect

addressing. The second byte of a Jump Indirect instruction contains the

address of the location which contains the address of the next instruction

to be executed. Let IS expa nd our previous demonstration program to

include an unconditional Jump Indirect instruction.

003

100
101
102

100

364
300
000

P

JUMP & MARK 300

HALT

300 000
301 000 HALT
302 354 JUMP INDIRECT (300)
303 300

EX 25-4

Do single instructions and record the values of P

1. P is 100

2. P is ------------------------
3. P is -------------------------
4. P is ----------------
Lo.cation 300 contains ------------------

Initially (300) are 000. After the Jump and Mark instruction, location 300

contains 102. When the Jump Indirect instruction is executed, the

computer uses the 300 I from the second byte, to find the address in 300

of the next instruction.

In our little example I the subroutine is so simple as to be ridiculous.

In general, subroutines will be more complex than shown here.

There is also a Jump and Mark Indirect instruction. The indirect

feature occurs first followed by the Mark feature. You ca n study this

instruction by yourself.

continued . . •

EX 25-5

The names, codes I symbolic representations I and the conditions

for all of the Jump instructions are summarized below.

NAME

JUMP
or JUMP DIRECT

JUMP INDIRECT

JUMP & MARK DIRECT

JUMP & MARK INDIRECT

CODE

U 4 V

U 5 V

U 6 V

U 7 V

xxx
XXX

XXX

XXX

SYMBOLIC

JUMP
or JPD W

JPI W

JMD W

JMI W

XXX

(XXX)

XXX

(XXX)

Q....
o A register
1 B register
2 X register
3 Unconditional

V

3 I 0
4 = 0
5 <: 0
6 ~ 0
7 ::> 0

Must be one
of these

values

W

(A, B, or X) combined with ('I 0, = 0, <: 0, ~ 0, >0)

or UNC

Previously I we have used the name JUMP II With more types of

Jump instructions I we need to refine our description 0 By including II Direct II

and IIIndirect II in the name we indicate the addressing mode {O The name

II Mark II tells when this feature is present. In the symbolic form we

abbreviate these as D I I I and M. With no Mark feature I we use the letter P.

EX 25-6

Exercise 26

We'll continue our work with subroutines and we'll comment about

computers and programming. As we have been learning new features and

new instructions I we ha ve kept repeating that we couldn't do anything

that we couldn It do with our first set of instructions. The new addres sing

modes and the new instructions made some things easier to do.

* * *
A computer must only be able to do only a few simple kinds of

operations.

More complex operations may be built up from combinations of

simpler operations.

The speed and accuracy of a computer make it reasonable to have

very complicated combinations of elementary operations.

As programmers ,our task is to find combinations of operations for

solving our problems. This task is not always easy.

* * *
The Add instruction is not a necessity. We could omit it. Weill

explain how by developing a subroutine for additions.

The addition of a + b can be performed in this way:

a + b = a - (-b)

If we have a Subtract instruction, we don't need an Add instruction. It is

easier if we do have an Add instruction, but for the time being let I s assume

that we don 't .

When we need to add a number (in NUM) to a number already in A,

we can use these instructions

TEMPORARY 1

TEMPORARY 2

STORE A

LOAD A
SUB A

STORE A

LOAD A
SUB A

c=
c = 0

NUM

C=

TEMPORARY 1

TEMPORARY 2

EX 26-1

Since addition is a common requirement we might choose to make

this into a subroutine

STORE A c=
LOAD A C=O
SUB A NUM

STORE A c=
LOAD A TEMPORARY 1

SUB A TEMPORARY 2

IP! UNC ADD

TEMPORARY 2

ADD

TEMPORARY 1

If the main part of the program requires addition we will jump to the

ADD subroutine whic·h will do the addition. When this is done I the

subroutine will return us to where we came from the main program.

However I we have one remaining problem 0 Each part of the main

program that uses the subroutine will generally need to add a different

number. As we have written the subroutine we always use the number

in NUM o

When the main part of the program uses the subroutine I it ·could

do this

LOAD

STORE

JMD

B DESIRED NUMBER

B NUM

UNC ADD

Before using the subroutine I the main part of the program places the

number to be added to A in NUM. Then our subroutine above would work.

Another way is as follows. The B register will contain the number

to be added. Then the main part of the program rI calls II the subroutine by

this sequence

LOAD

JMD

B DESIRED NUMBER

UNC ADD

but we have to change this instruction in the subroutine

to

SUB

SUB

A

A

NUM

B

EX 26-2

Another way is as follows. The B register will contain the address

of the number to be added. Then the subroutine is called by this sequence

LOAD

JMD

and in the original subroutine

B

UNC

C = Addres s of desired number

ADD

is replaced by

SUB

SUB

A

A

NUM

(B)

We are trying to illustrate that a set of conventions usually applies

to a subroutine. We must be sure that we understand these. What do

we have to do to call the subroutine? Where will be the answer when we

return from the subroutine? Are there any restrictions? What registers

does it use?

Just because we want to divide two numbers and there is a subroutine

called DIVID'E, it doesn It mean we can use this subroutine. Perhaps the

subroutine assumes the answer will be less than one and we have an

answer greater than one.

Here is a two part problem for you. First, write a subroutine to

multiply two small numbers together (I (We say "small il so the answer won It

exceed the capacity of one byte.) If U and V are the two small numbers,

the multiplication can be performed by adding V together U times.

For the second part of the problem write a program which will find

the volume of a box whose sides are J, K, and L. Use your subroutine

to find J x K and then multiply this result by L. Find the volume of this

box: 4 x 5 x 6.

There is a worksheet on the next page.

EX 26-3

~

RTC

R=O, A

R=l, B

R=2, X

R=3, UNC

T=4, JPD

T=5 I JPI

T=6, JMD

T=7 I JMI

C=3, 10
C=4, =0

C=5,<0

C=6, ~O

C=7 1>0

Other

RKA

K=O I Add

K=l, Sub

K=2 I Load

K=3 I Store

A=3, Immed

A=4, Mem

A=5 , Indirect

A=6, Index

A=7 I Ind/lnd

Loc Data
Symbolic Contents Comments
Address

See next page also.

EX 26-4

Loc Data
Symbolic Contents CommentsAddress

EX 26-5

Exercise 27

Ever}l time that we add or subtract to the A, B I or X regi ster I the

computer determines and stores a carry bit and an overflow bit. If we were

nit-pickers I V\Te would note that the carry bit should be called a borrow bit

for subtractions. We 're not I so we use the name II carry II for both addition

and subtraction II

First I let I s say where these bits are stored a nd then we \Alill say

what they are. For the A register I the carry and overflow are stored in

location 20 I, for B in 202 I and for Xin 203. The overflow bit is the

least significant bit (bO). (Note: Can you remember Qverflowand bO?)

The carry bit is in the adjacent position, bl.

Whenever an Add or Subtract instruction is used with the A register I

the carry and overflow bits in locatiorl 201 are updated. This is the only

time th.ese bits are changed except for things like Store B (201). The bits

in location 202 are updated when the addition or subtraction is made to

B register I in location 203 for addition and subtraction to the X register.

The other six bits in these locations are always set to o.

The carry bit is the easiest to explain. If you add two eight bit

numbers I the carry out of the left most position (b7) is the carry bit which

we have defined above. In these examples I you are to tell what the

carry bit will be.

10 001 100
+ 01 101 110

10 00 1 100
- 10 001 100

10 001 100
+ 11 101 110

10 001 011
- 10 001 100

Are you able to check your answer in the computer?----
V\!hat good is the carry bit? Here are a couple of uses. For numbers

which are considered to be positive I with a range from 000 to 3 77 octal, the

carry indicates that overflow has occurred. \Ve have added two numbers

whose sum is larger than 377 or we have subtracte,d one number from a

smaller number.

EX27-1

The second use for the carry is in multiple precision addition and

subtraction. A double precision number (for us) is 16 bits long and is

stored in two locations. If we add two double precision numbers, for

example
Possible carry (in this example, the carry is a 1)

~

10 011 101 11 110 100
+ 01 000 100 01 101 001

there may be a carry from the least significant half of the addition into

the most significant half. This would be the carry that we detect (or the

borrow in subtraction) .

The overflow bit pertains to a signed representation of numbers.

If our convention is that the number range is -128 to +127 decimal (or

-200 to +177 octal), then the overflow bit is a 1 if the correct answer to

the addition or subtraction is outside this range. Otherwise the overflow

bit will be aD.

Tell whether the cases below generate overflow or not. The numbers

are octal and you may have to convert them to binary to do the arithmetic.

+ 120
(+) +-&

- 112
(+) --B.-

+ 43
(-) - 162

Does overflow occur? ------

Does overflow occur? ------

Double check your answer by using the computer and a couple of

instructions.

Here is a problem for you to program. Write a subroutine for double

precision addition. The first number will be in B (most significant half)

and in A (the least significant half). The number to be added will be

stored in two consecutive locations in the memory. The least significant

half will be the location which has the smaller address. This address

will be in the X register.

EX 27-2

One person came up with this solution which has an error in it.

Can you find and correct his error?

ADD DP
ADD A (X)

ADD X C = 1

ADD B (X)

SKIP 0 bl (201)

SUB B C = 1

JPI UNC ADD DP

His error was _

which should be _

Correct I complete I and test the subroutine with the computer. A

worksheet is given below.

Loc Data Symbolic Contents Comments
Address

EX 27-3

Exercise 28

In this Exercise we III solve a problem. involving sorting. Along the

way weill take some time to talk about general problems.

OUf problem starts with these conditions.

1. We have a table of numbers, with at least two numbers I

stored in the memory. The table begins with symbolic

address TABLE and ends with LAST.

2. A number in the table is positive I from 0 to 100 (decimal) I

These numbers I in octal, are stored one per location.

3 . There may be repeated numbers, i. e ., 37 may appear

three times. Some numbers may not be present.

4. The original order of the numbers may be described

as random.

We are to write a program to re-arrange these numbers within the table so

that they will be in ascending order or at least a non-descending order.

In short, we are to put the numbers in order. For example I these numbers

are not sorted: I, 5 I 6 I 3, 2 I 0 I 7, 1. When sorted the sequence

becomes 0, I, I, 2, 3, 5, 6, 7.

* * *
Many people have a difficult time at this point. We speak now

about the general case of problem solving and not just about this particular

problem. First I they may not understand the problem. Second, they may

not know how to proceed toward finding a solution. The following ideas

are sometimes helpful.

Usually it is a good idea to forget that a computer is involved. Can

we re-state the problem in more familiar terms? Can we find a nmanualH

solution that we could do ourselve s ? Answers to these questions may

give us some insights and clues.

In our particular problem, it is the same as the problem of sorting

cards which have the number written on them. When given to us, the

cards are all scrambled up. We have to sort them in order.

EX 28-1

Still forgetting that we have a computer I we can ask ourselves how

we would solve the problem manually. Think of an many ways as you can

and see what the advantages and disadvantages are. Then try to translate

a selected method into computer terms. How would the computer do it?

At this point you should try this process yourself before reading on.

* * *
Using the cards as our model, these ways suggest themselves

(you may have thought of more):

1. Look through the cards for all of them with the number o. Put

these at the front. Next look for all of the cards with the number 1. Put

these behind the 0 cards. Continue in this way until all of the numbers

have been examined.

2. Sort the cards into ten piles by their unit I s digit. Pick up the

pile of cards ending in 9 I then pick up the cards ending in 8 and put them

behind the 9 IS. Continue this pattern until the cards ending in 0 are at

the back. Next go through the deck from the front and sort them again

into 10 piles but use the ten Q s digit this time. Thus ten new piles are

formed ,one of each ten I s digit. Pick up the pile for 00 to 09 I next put

the pile for 10 to 19 behind these I and so on. The cards will be sorted

when you have done this. (If you donlt believe it I try it) . *

3. Imagine the cards are spread in your hand like playing cards.

Compare two adjacent cards and put the larger one on the right and the

smaller one on the left. A pair may already be in order. If they arenlt I

e xc han get h e position of the pair of cards. Keep comparing and

interchanging cards until no more exchanges are possible. The cards are

then sorted.

The first and third methods are simple but may involve a lot of card

moving or comparisons. The second method has the least amount of card

handling. At the most I in this method I you III look at a card twice. The

second method is more complicated to perform within the computer. We III

use the third method since it seems to be the simplest to do.

* A slight extension of this method is required in our problem because
there are three digit numbers.

EX 28-2

Usually a good approach for writing a program is to identify the

heart of it and to work with that fora while. This tends to clear up ideas.

Then it will be obvious usually how the beginning and the end should

relate to this.

Letls put into words what we might do. Weill compare the first and

the second number. If necessary I weill interchange their positions in the

table so that the first of the pair is not larger than the second number.

Next weill compare the second and the third number I and interchange

them if necessary. We continue in this way until we have compared the

next-ta-last and the last number. This is one pass. Weill repeat making

passes until we have a pass without any interchange. Then we are done.

YES

INTERCHANGE
NUMBERS

YES

GO TO
NEXT PAIR

START WITH
FIRST PAIR

COMPARE THE
TWO NUMBERS

FIGURE 28.1

NO

Many times this is a

good point at which to

commit tentative ideas to

a flowchart. In Figure 28. 1

we give a flowchart in

very broad statements

which is incomplete. We

must have a method to

detect whether an inter­

change was made during

the last pass.

There is a technique

of using "flag" bits that

we can use. Actually we

need only one bit. Weill

reset this bit (make

equal to 0) before we start

a pass. If we do inter­

change a pair of numbers I

weill set this bit to a 1.

EX 28-3

At the end of a pass we can look at whether this bit is 0 or 1 to see if

we are done or if w-e need to make another pass.

SET FLAGGO TO
NEXT PAIR

START WITH
FIRST PAIR

A flowchart breaks

a larger problem into

smaller components and

relates these parts to

each other. With

experience I people can FIGURE 28.2

understand larger concepts.

Eventually their flowcharts may only say SORT when a sort is intended.

Let I s assume that you understand the component parts in Figure 28.2 and

proceed from there.

We have revised and

completed the original

flowchart to include this I

Figure 28. 2.

When a flowchart has

enough detail that it is

obvious how to complete

the solution I then no more

should be added. Too

much detail clutters it up.

Sometimes secondary or

auxiliary flowcharts are

better. What constitutes

enough detail depends upon

who uses it. If someone

besides the author is using

it, it seldom is as clear

as it was to the author.

A $ you write a program it is a good habit to add comments with the

instructions. These may tie the instructions in with the flowchart I or explain

very generally what is being done I or explain a IItricky" point. On the next

page we gi ve the symbolic instructions for our sort program. From the flow­

chart and the comments you should be able to interpret the individual

instructions. EX 28-4

A:O-­

B:l-­

X:2--

ADD:-O­

SUB:-1­

LOAD:-2­

STORE:-3-

Immed:--3

Mem:--4

Index:--6

JPD:-4-

A<:O:--5

UNC:3-4

=0:--4

SETO:0-2

SETl: 1-2

SKIPO:2 -2

Loc Data Symbolic
Contents CommentsAddress

p START

FlAG ---
START LOAD X C=O For first number

RESET FLAG SET 0 b7 FLAG

NEXT PAIR LOAD A TABLE.X First number

ADD X C=l To get second
number

SUB A TABLE.X Subtract second
number

TPD A<O OK Jump if order
is OK

TPD A=O OK

LOAD A TABLE,X

SUB X C=l

LOAD B TABLE X To inter-
change the

STORE A TABLE X two numbers

ADD X C=l

STORE B TABLE X
Remember that

SET 1 b7 FLAG interchange
was made

OK SUB X C=LAST-TABLE Test for end of
pass

JPD X=O END PASS Jump if end of
pass

ADD X C=LAST-TABLE Correction

JPD UNC NEXT PAIR Do next pair
Test for inter-

END PASS SKP 0 b7 FLAG changes I skip tc
ENDJOB if none

JPD UNC RESET FLAG Do another pa s s

END TOB HALT Done
TABLE Data to be

sortedLAST

EX 28-5

We Ive carried the analysis far enough as a joint effort.

There is a bad point about the program. We can1t complete the

program until we know what address that LAST will be. We would like it

to be more general. One technique is to store a number in the table (at the

end) which is not valid as data. In our case this might be a number in

the range 200 to 377. If we read a number of these characteristics I we

would know that we are at the end of the table.

Here is a set of data to be sorted by the three methods that we

discussed earlier

1456720379

0000321071

5620000324

2134728347

Would method 1 be a good method to sort these four numbers ?__

Why? . _

Would method 2 (when extended for the larger numbe~ be a good

method?---
Do you think the characteristics of the data to be sorted would

affect the efficiency of the method?~~__~_~_~ ~~_~

EX 28-6

Exercise 29

There's a four letter expression, GIGO I which stands for

tlGarbage In, Garbage Out ll
• The inventor of the phrase meant to convey

the idea that the output of a computer was no better than the data input.

Actually I this need not always be the case. One of the functions of a

program should be to test the validity of the input data. If the input data

is bad I the computer should not use it.

In this Exercise I we will use a program which tests input data I

has a subroutine I and has a new example of BCD to binary conversion.

Our problem is to determine whether a date I which is our input I is valid

or not. The input will be in three parts in this sequence:

2 BCD digits for the month

2 BCD digits for the day of the month

2 BCD digits {the last two} for the year.

Only 1 to 12 will be a valid month. The number of days per month

depends on the month and whether it is a leap year or not. The year can

be any two BCD digits.

Which years are leap years? These are the rules:

A. If the year is divisible by 400 (decimal) evenly

(with no remainder) I it is a leap year.

B. Years divisible by 100 evenly but not by 400

are not leap years.

C. Years divisible by 4 evenly but not by 100

are leap years.

Our program will check dates from 1601 to 1999. The dates 1600

and 2000 are leap years. The years 1700 I 1800 I and 1900 were not leap

years. Our program will consider a year input of 00 not to be a leap year.

During leap years I February has 29 days. Otherwise it has 28 days.

We give the complete program including a set of comments. Weill

discuss some of the features of it starting now with the INPUT subroutine.

This subroutine is used to get the month, day I and year inputs and to

EX 29-1

convert the entry to binary. The output display is used to indicate which

of these three should be entered next. These output codes are

Month
Day
Year

00 100 000
00 010 000
00 001 000

The part of the main program which uses the subroutine will load the

A register with the proper output code. The INPUT subroutine stores A in

the output location 200. Coming into the subroutine I the B register may

contain information which should be saved.

The BCD to binary conversion starts with LOOP within the INPUT

subroutine. We follow a procedure similar to the one used earlier in

Exercise 18 except that we detect too many subtractions from B by the

carry (or borrow) which is stored in location 202. The correction for the

A register is a combination of two things:

1 e We have added a12 one too many times and this

should be subtracted out.

2 • In addi ng the uni ts digit in B I we will be adding

1111 UUUU since we oversubtracted on B. The

correction for this is to add 020.

The combined correction from 1) and 2) is to add 006.

If the number I after conversion I has b7 as a I, this would

represent a number larger than +127 decimal. Since this would not be a

valid month I day I or year in our convention I this would be a bad input.

In this case we jump to the program for bad input and we do not make a

normal return from the subroutine. If the input passes this first test I we

restore the B register to its initial value and make a normal return from the

subroutine.

Looking now at the main part of the program I it commences at START

where the A register is loaded with the code that indicates a month should

be entered. We then use the subroutine to get the input and convert it to

binary. On the return from this subroutine the converted value is in the

A register. If this number is zero, it is a bad input and it is rejected.

If the month is larger than 12 decimal, it is also rejected.

EX 29-2

START LOAD A C = 040 Cod e for month

MONTH JPM UNC INPUT Get BCD input and
co nvert to bi na ry

JPD A==O BAD No zero month

STORE A X Keep month in X

SUB X C = 015 (=13 decimal)

JPD X~O BAD Month larger than 12

ADD X C = 015 Restore

DAY LOAD A C = 020 Code for day

JPM UNC INPUT Get BCD input and
convert to binary

JPD A=O BAD No zero day

STORE A B Keep day in B

YEAR LOAD A C = 010 Code for year

JPM UNC INPUT Get BCD input and
convert to binary

JPD A=O NOT LP YR

SUB A C = 143 (=99 decimal)

JPD A>O BAD Larger than 99

ADD A C = 143 Restore

AND A C = 003 Leap year test

JPD Ala NOT LP YR

LP YR SETl bO FEB February has 29 days
in leap years

NOT LP YR SUB B JAN -l,X Test for number of days
per month

JPD B>O BAD Too many days for the
month

LOAD A C = 240 Codes .f 0 r ugood" and
II month II

JPD UNC OUT

BAD LOAD A C = 041 Codes for IIbadll and
II month II

OUT SETO bO FEB Restore Feb to 28 days

JPD UNC MONTH Start over

EX 29-3

JAN
FEB

037
034
037
036
037
036
037
037
036
037
036
037

= 31 decimal
= 28 decimal

= 30 decimal

EX 29-4

To get the day input I we load A with the code for day and use

the subroutine again. Again when we return, a zero value is not valid. The

day is saved in the B register.

For the year input, we load A with the year code and jump to the

INPUT subroutine. On returning I a zero value is valid and it is not a

leap year (1900). Next we test for values greater than 99 decimal and

take the exit to BAD if the year does exceed 99. If it is valid, we restore

the original value and extract the two least significant bits • Since we

are in the binary system I these two bits would be the remainder after

division by 4. If they have the value I, 2, or 3 I it is not a leap year.

For the leap years we set the least significant. bit of the number

of days in February to 1. There is a table of 12 entries, one for each

month, which is the maximum numbers of days for that month. Twenty-eight

in octal is 034 and twenty-nine is 035 in octal.

To test whether we have more days than the month allows I we

subtract the table entry from the number of days in B. The subtraction uses

indexed addressing where X contains the month. An arlswer greater than

zero is bad. For a good answer, we load A with 240 which is a combination

of the codes for IIgood" and "month ll
•

Good

Month

The program then goe s to OUT.

10 000 000

00 100 000

For a bad input we load A with the codes for IIbad" and "month".

Bad

Month

00 000 001

00 100 000

In the OUT routine, we restore February to 28 days and then jump back to

MONTH. This takes us to the INPUT subroutine where A will be stored in

the output lights.

Here are some variations on this problem for you to program.

1. In most countries the data sequence is day, month, year.

There is more logic for doing it this way. Revise the program for this

input sequence.

EX 29-5

2. Either of the se BCD inputs

0000 1010

or 0001 0000

yields an octal 012 (= 10 decimal). The first of these BCD inputs uses a

non-valid BCD code. An even better input validity check would include

tests for non-valid BCD codes even though the non-valid BCD codes lead

to valid answers. Re-write the INPUT subroutine to eliminate non-valid

BCD codes.

3. Expand c.nd modify the program so that the program will

indicate on which day of the week a valid date occurs. Do only 1900 to

1999. The output display could be in this form

Sunday .0 000 000

Monday o. 000 000

etc.

Saturday 00 000 0.0

Not valid 00 000 00.

Hint: January 1, 1900 I fell on a Monday.

A news item noted that a grandmother completed her high school

work. The education department1s computer rejected her application for

a diploma because it wasn It programmed to handle forms for persons of

her age. In processing her application I the computer subtracted her date

of birth, 1887 , from the current year and arrived at an age of minus 16.

What can you tell about how the program was written.

EX 29-6

Exercise 30

Computers are deterministic. We mean that what a computer does

is well defined and, except forfailures, it will always do the same thing

when it starts from identical sets of conditions. Nothing is left to the

"imagination" of the computer. It is a slave which does "its thing" without

any variation.

Many problems can best be solved by the use of random numbers.

Generating a random number in a deterministic machine is not easy. These

techniques have been used:

1. Store previously generated random numbers in the memory.

(One or more books have been published which consist of nothing but random

numbers .)

2. Generate pseudo-random numbers in the computer. These

numbers I though deterministic I will pass the most common tests of random

numbers.

3. In our computer we will describe a third method which

depends upon an influence external to the computer I namely the operator.

This is a simple method and the" quality" of the random numbers is fair

to good.

What is a random number? We shall try to approximate the following.

A bowl contains 256 balls which are numbered 000 to 3 77 octally. A ball

is selected by some impartial method and the number on it become s the

next random number. This ball is placed back into the bowl and they are

mixed up again. Again a ball is selected. At any drawing of a ball, all

balls are equally likely to be drawn regardless of the previous history of

drawing.

We shall use a somewhat different technique. While the computer

is idling I with nothing else to do I weill have it add one to a number. When

we push switch 7 I it will stop counting and it will rotate the number" three

bits to the left. When we release the switch, the computer will resume

adding one of the now rotated number. When we push switch 7 again it will

rotate the number 3 bits to the left again. And again when we release

switch 7 I it will resume adding 1. The third time that we push switch 7,

the computer will give us this number as the random number.

EX 30-1

A random element is present because the time at which we push the

switch varies. In addition, requiring three pushes to obtain one eight bit

number increases the chances for variations. If we required only a one bit

random number ,one operator interaction would probably be enough.

We are going to give you a complete program and explain it along with

some techniques for using the computer. At the end of the Exercise we will

suggest some problems for you to examine.

In this program the computer never stops running. Usually we have

the computer stop for input. Here I when the program has nothing else to do,

it remains in a loop of three instructions:

COUNT ADD B

SKPI b7

JPD UNC

C = 1

(377)

COUNT

The B register holds the number which will become our random number.

In this loop of three instructions I we add one to B each time through. If

switch 7 is pushed then b7 of location 377 will be a I, and the Skip will

be taken which would cause the program to bypass the Jump instruction.

When switch 7 has not been pushed, the Skip is not taken and the Jump

instruction keeps the program in this loop.

Our requirernent was for three pushes of the switch to generate one

number. On leaving the loop above I we will subtract 1 in the X register

to count the number of times we have pushed svvitch 7. When X is zero,

we have pushed switch 7 three times and we take the number in B as our

random number.

SUB X

JPD X=O

ROTL B3

C=l

HAVE NUMBER

If X is not yet zero, we rotated B three bits to the left.

When the random number has been generated, our program stores it

in the output location. We then Jump to START to repeat the process.

If some other use were to be made of the number I this would be a logical

place to exit to that program. The return should be made to START to

re-initialize the X register.

EX 30-2

The next problem is to detect whether switch 7 has been released.

We do it this way

CLEAR SET 0

SKP 0

JPD
JPD

b7

b7

UNC

UNC

(377)

(377)

CLEAR

COUNT

The program resets bit 7 in location 377 0 If the switch is still dep ssed,

this bit reappears in location 377 and the Skip is not effective. Wrejump

back to CLEAR and keep trying this. When switch 7 is eventually released

bit 7 will not reappear in location 377 and the Skip will be taken. This

puts the program counter at the Jump instruction which in turn returns to

COUNT.

We give the complete program below, all ready to use. Try it for

a while. Do you think the numbers are random?

se

Loc Data
Sym"bolic

Contents CommentsAddress
000 --- A
003 033 P START
200 000 OUTPUT

004 103 COUNT ADD B C=l Idle loop
005 001
006 372 SKP 1 b7 (377) Exit with
007 377 switch 7
010 344 JPD UNC COUNT
011 004
012 213 SUB X C=l X control number
013 001 of times
014 244 JPD X=O HAVE NUM Have random
015 027 number now
016 371 ROTL B3 Rotate
017 072 CLEAR SET 0 b7 (377) Test for switch
020 377 7 released

. " 021 272 SKP 0 b7 (377)
022 377
023 344 JPD UNC CLEAR Not released
024 017
025 344 JPD UNC COUNT Released
026 004
027 134 HAVE NUM STORE B (200) Display
030 200
031 344 JPD UNC START Dummy
032 033 instruction
033 223 START LOAD X G=3 Initial value
034 003
035 344 JPD UNC CLEAR Go test for relea
036 017 of switch 7 I

EX 30-3

Here are a variety of problems for you.

Problem 1

Imagine that you are drawing balls numbered 0 to 255 (0 to 377

octal) which you return to the container after drawing each one. On the

average, how many times would you expect to draw balls before you repeat

a number previously drawn? You can use just the program we have given

and keep track of the numbers you have drawn on paper. Preferably I you

can write a program for this purpose.

Problem 2

Count the number of times that 0 I I, 2, -----, 7 appears in the

units position. On very large samples each digit should appear lI'about lf

one-eighth of the time. Similar counts can be made for the "tens il and

IIhundreds If digit.

Problem 3

Following a 0 digit in the units position, count the number of times

it is followed by a 0 I a 1, a 2 I etc. in the units position of the next

number. This is partial check to determine whether two successive numbers

are independent" If they are independent I knowing the first nllmber does

not help you predict the next number. The opposite of independent is

dependent. If the second number is dependent to any degree on the first

number I knowledge of the first number can help you predict the second

number.

We suggested one type of test above but this can be extended in

many obvious ways. For example I is the hundreds digit of a second number

dependent I at least partia lly I upon the units digit of the first number?

Problem 4

Write a program to simulate the throw of dice or the deal of a deck

of cards. Hint: Use the units octal digit but throw the number away if

it is a 0 or 7. Use the rrtens Ir digit for the other die.

EX 30-4

Problem 5

Try writing your own random number generator through the use of

an external variable such as we used.

Problem 6

Try writing a random number generator based only on internal

operations of the computer.

* * *

A pseudo-random sequence of 255 bits can be generated by the

following process:

1. Start with any number in a register other than 000.

2. Count the number of ones in bit positions 7, 5, 3, 2 I I, and o.
3. Do a left shift of one bit on the number. This throws avvay

bit 7 and creates a zero in bit o.
4. If the number of lis in step 2 is odd, put a 1 in bit 0, but

if the number of OIS in step 2 is even, put a 0 in bit O.

'Each cycle of these four steps generates one new bit, say it is the

bit which is entered into position o. After 255 (decimal) cycles the pattern

will repeat.

EX 30-5

APPENDIX I

Oct Dec Oct Dec Oct Dec Oct Dec Oct Dec Oct Dec Oct Dec Oct Dec

000 000 040 032 100 064 140 096 200 128 240 160 300 192 340 224

001 001 041 033 10 1 065 141 097 201 129 241 161 301 193 341 225

002 002 042 034 102 066 142 098 202 130 242 162 302 194 342 226

003 003 043 035 103 067 143 099 203 131 243 163 303 195 343 227

004 004 044 036 104 068 144 100 204 132 244 164 304 196 344 228

005 005 045 037 105 069 145 101 205 133 245 165 305 197 345 229

006 006 046 038 106 070 146 102 206 134 246 166 306 198 346 230

007 007 047 039 107 071 147 103 207 135 247 167 307 199 347 231

010 008 050 040 110 072 150 104 210 136 250 168 310 200 350 232

all 009 051 041 III 073 151 105 211 137 251 169 311 201 351 233

012 010 052 042 112 074 152 106 212 138 252 170 312 202 352 234

013 011 053 043 113 075 153 107 213 139 253 171 313 203 353 235

014 012 054 044 114 076 154 108 214 140 254 172 314 204 354 236

015 013 055 045 115 077 155 109 215 141 255 173 315 205 355 237

016 014 056 046 116 078 156 110 216 142 256 174 316 206 356 238

017 015 057 047 117 079 157 III 217 143 257 175 317 207 357 239

020 016 060 048 120 080 160 112 220 144 260 176 320 208 360 240

021 017 061 049 121 081 161 113 221 145 261 177 321 209 361 241

022 018 062 050 122 082 162 114 222 146 262 178 322 210 362 242

023 019 063 051 123 083 163 115 223 147 263 179 323 211 363 243

024 020 064 052 124 084 164 116 224 148 264 180 324 212 364 244

025 021 065 053 125 085 165 117 225 149 265 181 325 213 365 245

026 022 066 054 126 086 166 118 226 150 266 182 326 214 366 246

027 023 067 055 127 087 167 119 227 151 267 183 327 215 367 247

030 024 070 056 130 088 170 120 230 152 270 184 330 216 370 248

031 025 071 057 131 089 171 121 231 153 271 185 331 217 371 249

032 026 072 058 132 090 172 122 232 154 272 186 332 218 372 250

033 027 073 059 133 091 173 123 233 155 273 187 333 219 373 251

034 028 074 060 134 092 174 124 234 156 274 188 334 220 374 252

035 029 075 061 135 093 175 125 235 157 275 189 335 221 375 253

036 030 076 062 136 094 176 126 236 158 276 190 336 222 376 254

037 031 077 063 137 095 177 127 237 159 277 191 337 223 377 255

APPENDIX II

SUMMARY OF INSTRUCTION CODING

Instruction First Byte Octal Digits

Add, Sub,
Load, Store

D--

A Reg =
B Reg =
X Reg =

a
1
2

-D-

Add =
Sub =
Load =
Store =

o
1
2
3

--D

Constant = 3
Memory = 4
Indirect = 5
Indexed = 6
Ind/lnd = 7

Or I And, Or = Constant = 3
Lneg 3 (Noap = Memory = 4

And = Indirect = 5
Lneg = Indexed = 6

Ind/lnd = 7

Jumps A Reg = 0 JPD = 4 (I 0) = 3
B Reg = 1 JPI= 5 (= 0) = 4
X Reg = 2 JMD = 6 (< 0) = 5
Unc. = 3 JMI = 7 (~ 0) = 6

(> 0) = 7

Bit Test and
Ma nipulation

Set to 0 =
Set to 1 =
Skip on 0 =
Skip on 1 =

o
1
2
3

Digit Value
= Position

2

Shifts I

Rotates
(one byte only)

Right Shift = 0
Right Rotates = 1
Left Shift = 2
Left Rotate = 3

A= 0
B= 4
----plus----
1 place = 1
2 places = 2
3 places = 3
4 places = a

1

Miscellaneous ~alt =
(one byte only) ~oop = ~ ~~ U[Any value] [o]

	Laboratory Exercises-Title Page
	Laboratory Exercises-Blank
	Laboratory Exercises-EX-I (Preface)
	Laboratory Exercises-Blank

	Laboratory Exercises-EX 1-1
	Laboratory Exercises-EX 1-2
	Laboratory Exercises-EX 1-3
	Laboratory Exercises-EX 1-4
	Laboratory Exercises-EX 1-5
	Laboratory Exercises-EX 1-6
	Laboratory Exercises-EX 2-1
	Laboratory Exercises-EX 2-2
	Laboratory Exercises-EX 2-3
	Laboratory Exercises-EX 3-1
	Laboratory Exercises-EX 3-2
	Laboratory Exercises-EX 3-3
	Laboratory Exercises-EX 3-4
	Laboratory Exercises-EX 3-5
	Laboratory Exercises-EX 4-1
	Laboratory Exercises-EX 4-2
	Laboratory Exercises-EX 4-3
	Laboratory Exercises-EX 5-1
	Laboratory Exercises-EX 5-2
	Laboratory Exercises-EX 5-3
	Laboratory Exercises-EX 5-4
	Laboratory Exercises-EX 6-1
	Laboratory Exercises-EX 6-2
	Laboratory Exercises-EX 6-3
	Laboratory Exercises-EX 6-4
	Laboratory Exercises-EX 7-1
	Laboratory Exercises-EX 7-2
	Laboratory Exercises-EX 7-3
	Laboratory Exercises-EX 7-4
	Laboratory Exercises-EX 8-1

	Laboratory Exercises-EX 8-2
	Laboratory Exercises-EX 8-3
	Laboratory Exercises-EX 9-1
	Laboratory Exercises-EX 9-2
	Laboratory Exercises-EX 9-3
	Laboratory Exercises-EX 9-4
	Laboratory Exercises-EX 9-5
	Laboratory Exercises-EX 10-1
	Laboratory Exercises-EX 10-2
	Laboratory Exercises-EX 10-3
	Laboratory Exercises-EX 10-4
	Laboratory Exercises-EX 11-1
	Laboratory Exercises-EX 11-2
	Laboratory Exercises-EX 11-3
	Laboratory Exercises-EX 11-4
	Laboratory Exercises-EX 11-5
	Laboratory Exercises-EX 11-6
	Laboratory Exercises-EX 11-7
	Laboratory Exercises-EX 12-1
	Laboratory Exercises-EX 12-2
	Laboratory Exercises-EX 12-3
	Laboratory Exercises-EX 12-4
	Laboratory Exercises-EX 12-5
	Laboratory Exercises-EX 12-6
	Laboratory Exercises-EX 13-1

	Laboratory Exercises-EX 13-2
	Laboratory Exercises-EX 13-3
	Laboratory Exercises-EX 13-4
	Laboratory Exercises-EX 13-5
	Laboratory Exercises-EX 14-1
	Laboratory Exercises-EX 14-2
	Laboratory Exercises-EX 14-3
	Laboratory Exercises-EX 14-4
	Laboratory Exercises-EX 14-5
	Laboratory Exercises-EX 14-6
	Laboratory Exercises-EX 15-1
	Laboratory Exercises-EX 15-2
	Laboratory Exercises-EX 15-3
	Laboratory Exercises-EX 15-4
	Laboratory Exercises-EX 15-5
	Laboratory Exercises-EX 15-6
	Laboratory Exercises-EX 16-1
	Laboratory Exercises-EX 16-2
	Laboratory Exercises-EX 16-3
	Laboratory Exercises-EX 16-4
	Laboratory Exercises-EX 16-5
	Laboratory Exercises-EX 16-6
	Laboratory Exercises-EX 17-1
	Laboratory Exercises-EX 17-2
	Laboratory Exercises-EX 17-3
	Laboratory Exercises-EX 17-4
	Laboratory Exercises-EX 17-5
	Laboratory Exercises-EX 18-1
	Laboratory Exercises-EX 18-2
	Laboratory Exercises-EX 18-3
	Laboratory Exercises-EX 18-4
	Laboratory Exercises-EX 18-5
	Laboratory Exercises-EX 18-6
	Laboratory Exercises-EX 18-7
	Laboratory Exercises-EX 19-1
	Laboratory Exercises-EX 19-2
	Laboratory Exercises-EX 19-3
	Laboratory Exercises-EX 19-4
	Laboratory Exercises-EX 20-1
	Laboratory Exercises-EX 20-2
	Laboratory Exercises-EX 20-3
	Laboratory Exercises-EX 20-4

	Laboratory Exercises-EX 20-5
	Laboratory Exercises-EX 20-6
	Laboratory Exercises-EX 20-7
	Laboratory Exercises-EX 21-1
	Laboratory Exercises-EX 21-2
	Laboratory Exercises-EX 21-3
	Laboratory Exercises-EX 21-4
	Laboratory Exercises-EX 21-5
	Laboratory Exercises-EX 21-6
	Laboratory Exercises-EX 22-1
	Laboratory Exercises-EX 22-2
	Laboratory Exercises-EX 22-3
	Laboratory Exercises-EX 22-4
	Laboratory Exercises-EX 22-5
	Laboratory Exercises-EX 23-1
	Laboratory Exercises-EX 23-2
	Laboratory Exercises-EX 23-3
	Laboratory Exercises-EX 23-4
	Laboratory Exercises-EX 24-1
	Laboratory Exercises-EX 24-2
	Laboratory Exercises-EX 24-3
	Laboratory Exercises-EX 24-4
	Laboratory Exercises-EX 25-1
	Laboratory Exercises-EX 25-2
	Laboratory Exercises-EX 25-3
	Laboratory Exercises-EX 25-4
	Laboratory Exercises-EX 25-5
	Laboratory Exercises-EX 25-6
	Laboratory Exercises-EX 26-1
	Laboratory Exercises-EX 26-2

	Laboratory Exercises-EX 26-3
	Laboratory Exercises-EX 26-4
	Laboratory Exercises-EX 26-5
	Laboratory Exercises-EX 27-1
	Laboratory Exercises-EX 27-2
	Laboratory Exercises-EX 27-3
	Laboratory Exercises-EX 28-1

	Laboratory Exercises-EX 28-2
	Laboratory Exercises-EX 28-3
	Laboratory Exercises-EX 28-4
	Laboratory Exercises-EX 28-5
	Laboratory Exercises-EX 28-6
	Laboratory Exercises-EX 29-1
	Laboratory Exercises-EX 29-2
	Laboratory Exercises-EX 29-3
	Laboratory Exercises-EX 29-4
	Laboratory Exercises-EX 29-5
	Laboratory Exercises-EX 29-6
	Laboratory Exercises-EX 30-1
	Laboratory Exercises-EX 30-2
	Laboratory Exercises-EX 30-3
	Laboratory Exercises-EX 30-4
	Laboratory Exercises-EX 30-5
	Laboratory Exercises-Appendix I
	Laboratory Exercises-Appendix II

